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ampere

angstrom = 10" '® m

vector potential, Wb m ™!

area, m?

collecting aperture

effective aperture

maximum effective aperture

effective aperture, receiving

effective aperture, transmitting

geometric aperture

physical aperture

scattering aperture

axial ratio

astronomical unit

atto = 107 '® {prefix}

unit vector

magnetic flux density,
T=Wbm™?

susceptance, ¥

suscepiance/unit length, G m~

beam width, first nulls

coulomb

capacitance, F

capacitance/unit length, F m

a constant, ¢ = velocity of light

cubic centimeter

1

" degree Celsius

electric flux density, C m ™2

directivity

distance, m

degree, angle

decibel = 10 log (P,/P )
decibels over isotropic
element of length (s¢alar), m
element of length (vector}), m
element of surface {scalar), m?
etement of surface (vector), m?
element of volume {scalar), m*
electric field intensity, ¥ m™ !
exa = 10'® {prefix)
electromotive force, ¥

electric charge, C

farad

force, N

femto = 107 * (prefix}
frequency, Hz

giga = 10° (prefix)
conductance, 13
conductance/unit length, U m™
gain
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magnetic field, Am™"'
half-power beam width
hertz = 1 cycle per second
effective height
current, A
joule
current density, A m~?
jansky, 10°2* Wm *Hz"!
kelvin
sheet-current density, A m !
a consiant
kilo = 10? {prefix)
kilogram
inductance, H
inductance/unit length, H m ™
liter
length (scalar), m
leagth {vector), m
left circutarly polarized
left elliptically polarized
natural logarithm (base &)
commaon logarithm (base 10)
mega = 10° (prefix) '
magnetization, A m "~
polarization state of wave
polarization state of antenna
meter
milli = 1072 (prefix}
minute
newton
number {integer)
neper )
nano = 10~ % (prefix)
unit vector normal to a surface
polarization of dielectric, C m~
peta = 10'? (prefix)
polarization state = P{y. &)
power, W
“normalized power pattern,
dimensionless
pico = 10 "!2 (prefix)
charge, C
resistance, £2
radiation resistance
right-circular polarization
right-elliptical polarization
revelution .
radius, m; also coordinate
direction .
umit vector in ¥ direction
radian -
square radian = steradian = g

Z v mmm
in tn
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Poynting vector, W m"~?
flux density, W m~2 Hz !
distance, m; also surface area, m?
second (of time)
steradian = square radian = rad?
tesla = Wh m 2
tera = 102 (prefix)
timne, s
radiation intensity, W s¢~!
voit )
voltage (also eml), ¥
emf {electromotive force), V
velocity, m s !
watt
weber
energy density, J m~?
reactance, £}
reactance/unit length, Q m !
unil vector in x direction
coordinate direction
admittance, UJ :
admittance/unit length, ¥ m~?
unit vector in y ditection
coordinate direction
impedance, £
impedance/unit length, £ m"?
intrinsic impedance, conductor, (}
per square
intrinsic impedance, dielectric, Q
per square
load impedance, Q
‘Wansverse impedance, rectangular
waveguide, 11
transverse impedance, cylindrical
waveguide,
intrinsic itmpedance, space, ) per
square
characteristic impedance,
transmission line, 0
umit vector in z direction
coordinate direction, also red
shift
(alpha) angle, deg or rad
attenuation constant, nepm~!
(beta) angle, deg or rad; also
phase constant = 2n/i
(gamma) angle, deg or rad
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(delta) angle, deg or rad
(epsilon) permittivity (dielectric
constant), F m~!
aperture efficiency
beam efficiency
stray factor
relative permittivity
permittivity of vacuum, F m ¢
(cta)
(theta) angle, deg or rad
(theta) unit vector in @ direction
{kappa) constant
(lambda) wavelength, m
free-space wavelength
(mu) permeability, H m ™!
relative permeability
permeability of vacuum, H m !
(nu)
{xi)
(pi} = 3.1416
(rho) electric charge density,
C m™*: also mass density,
kg m~?
reflection coefficient,
dimensionless
surface charge density, C m ™2
linear charge density, C m !
(sigma) conductivity, G m™"'
radar cross section
{tau} tilt angle, polarization
ellipse, deg or rad
transmission coefficient
(phi) angle, deg or rad
(phi) unit vector in ¢ direction
{chi) susceptibility, dimensionless
{pst) angle, deg or rad
magnetic flux, Wh
{capital omega) ohm
{capital omega) solid angle, sr or
deg?
beam area
main beam area
minor lobe arca
(upsidedown capital omega) mho
U = 1/Q) =8, siemens)
{omega} angular frequency
(=2nf),rad 5!
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PREFACE

Although there has been an explosion in antenna technology in the years since
Antennas was published, the basic principles and theory remain unchanged. My -
aim in this new edition is to blend a central core of basics from the first edition
with a representative selection of important new developments and advances
resulting in a much enlarged, updated book. 1t is appropriate that it is appearing
just 100 years from the date on which the first antennas were invented by Hein-
rich Hertz to whom, along with Guglielmo Marconi, this new edition is dedi-
cated.

As with the first edition, physical concepts are emphasized which aid in the
visualization and understanding of the radiation phenomenon. More worked
examples are given to illustrate the steps and thought processes required in going
from a fundamental equation to a useful answer. The new ¢dition stresses practi-
cal approaches to real-world situations and much information of value is made
available in the form of many simple drawings, graphs and equations.

As with the first edition my purposec is to give a unified treatment of
antennas from the electromagnetic theory point of view while paying attention to
important applications. Following a brief history of antennas in the first chapter
{o set the stage, the next three chapters deal with basic concepts and the theory of
point sources. These are followed by chapters on the linear, foop, helical, bicon-
ical and cylindrical antennas.

Then come chapters on antenna arrays, reflectors, siot, horn, complemen-
tary and lens antennas. The Jast four chapters discuss broadband and frequency-
independent antennas, antennas for special applications including electrically
small and physically small antennas, temperature, remote sensing, radar, scat-
tering and measurements. The Appendix has many useful tables and references.

The book has over 1000 drawings and illustrations, many of which are
unique, providing physical insights into the process of radiation from antennas.

" The book is an outgrowth of lectures for antenna courses 1 have given at

xxiii
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Ohio State University and at Ohio University. The material is suitable for use at
late undergraduate or early graduate level and is more than adequate for a one-
semester course. The problem sets at the end of sach chapter illustrate and extend
the materiat covered in the text. In many cases they include important results on
topics listed in the index. There are over 500 problems and worked examples.

Antennas has been written to serve not only as a textbook but also as a
reference hpok for the practicing enginger and scientist, As an aid to those
secking additional information on a particular subject, the book is well docu-
mented with references both in footnotes and at the ends of chapters.

A few years ago it was customary to devote many pages of a textbook to
computer programs, some with hundreds of steps. Now with many convenfent]y
packaged programs and codes -readily available this is no longer necessary.
Extensive listings of such programs and codes, particularly those using moment
methods, are given in Chapter 9 and in the Appendix. Nevertheless, some rela-
tively short programs are included with the problem sets and in the Appendix.

From my IEEE Antennas and Propagation Society Centennial address
(1984} 1 quote,

With mankind’s activities expanding into space, the need for antennas will grow to
an unprecedenled degree. Antennas will provide the vital links 1o and from every-
thing out there. The future of antennas reaches to 1he stars,

Robert G. Kouyoumjian, Benedikt A. Munk and Edward H. Newman of
the Ohio State University have contributed sections on scattering, frequency-
sensitive surfaces and moment method respectively. I have edited these contribu-
tions 10 make symbols and terminology consistent with the rest of the book and
any errors are my responsibility.

In addition, I gratefully acknowledge the assistance, comments and data
from many others on the topics listed:

Walter D. Burnside, Ohio State Unijversit ¥y, compact ranges

Robert 8. Dixon, Ohio State University, phased-arrays

Von R. Eshleman, Stanford University, gravity lenses

Paul E. Mayes, University of Illinois, frequency-independent antennas
Robert E. Munson, Ball Aerospace, microstrip antennas

Leon Peters, Jr., Ohio State University, dipole antennas

David M. Pozar, University of Massachusetts, moment method

Jack H. Richmond, Ohio State University, moment method

Helmut E. Schrank, Westinghouse, low-sidelobe antennas

Chen-To Tai, University of Michigan, dipole antennas

Throughout the preparation of this edition, T have had the expert editorial
assistance of D, Erich Pache.

Hlustration and manuscript preparation have been handled by Robert
Davis, Kristine Hall and William Taylor. McGraw-Hiil editors were Sanjeey
Rao, Alar Fltken and John Morriss,
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CHAPTER

1

INTRODUCTION

1-1 INTRODUCTION. Since Hertz and Marcon, antennas have become
increasingly important to our society until now they are indispensable. They are
everywhere: at our homes and workplaces, on our cars and aircraft, while our
ships, satellites and spacecraft bristle with them. Even as pedestrians, we carry
them.

Although antennas may seem to have a bewildering, almost infinite variety.
they all operate according to the same basic principies of electromagnetics. The
aim of this book is to explain these principles in the simplest possible terms and
illusirale them with many practical examples. In some situations intuitive
approaches will suffice while in others complete rigor is needed. The book pro-
vides a blend of both with selected examples illustrating when to use one or the
other.

This chapter provides an historical background while Chap. 2 gives an
introduction to basic concepts, The chapters that follow develop the subject in
more detail.

122 THE ORIGINS OF ELECTROMAGNETIC THEORY AND
THE FIRST ANTENNAS.! Six hundred years before Christ, a Greek mathe-
matician, astronomer and philosopher, Thales of Miletus, noted that when amber
is rubbed with silk it produces sparks and has a seemingly magical power (o

LD, Kraus, “Antennas Since Hertz and Marconi,” IEEE Trans. Ams. Prop., AP-33, 131-137, 1985,
Sec also references at end of chapter.
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attract particles of fluff and straw. The Greek word for amber is elektron and
from this we get our words electricity, electron and electronies. Thales also noted
the attractive power between pieces of a natural magnetic rock called loadstone,

found at a place called Magnesia, from which is derived the words magnet and |

magnetism. Thales was a pioneer in both electricity and magnetism but his inter-

est, like that of others of his time, was philosophical rather than practical, and it |

was 22 centuries before these phenomena were investigated in a serious experi-
mental way.

It remained for William Gilbert of England in about A.D. 1600 to perform
the first systematic experiments of electric and magnetic phenomena, describing

his experiments in his celebrated book, De Magnete. Gilbert invented the ¢lectro- |

scope for measuring electrostatic effects. He was also the first to recognize that

the earth itself is a huge magnet, thus providing new insights into the principles

of the compass and dip needle.

In experiments with electricity made about 1750 that led to his invention of
the lightning rod, Benjamin Franklin, the American sctentist-statesman, estab-
lished the law of conservation of charge and determined that there are both posi-
tive and negative charges. Later, Charles Augustin de Coulomb of France
measured electric and magnetic forces with a delicate torsion balance he invent-
ed. During this period Karl Friedrich Gauss, a German mathematician and
astropomer, formulated his famous divergence theorem relating a volume and its
surface,

By 1800 Alessandro Volta of Italy had invented the voltaic cell and, con-
necting several in series, the clectric battery. With batteries, electric currents
could be produced, and in 1819 the Danish professor of physics Hans Christian
Oersted found that a current-carsying wire caused a nearby compass needle to
deflect, thus discovering that electricity could produce magnetism. Before Oersted,
electricity and magnetism were considered as entirely independent phenomena.

The following year, André Marie Ampére, a French physicist, extended
Qersted's observations. He invented the solenoidal coil for producing magnetic
fields and theerized correctly that the atoms in a magnet are magnetized by tiny

electric currents circulating in them. About this time Georg Simon Ohm of |

Germany published his now-famous law relating current, voltage and resistance,
However, it initially met with ridicule and a decade passed before scientists began
to recognize its truth and importance.

Then in 1831, Michael Faraday of London demonstrated that a changing ;

magnetic field .could produce an electric current. Whereas Qersted found that
electricity could produce magnetism, Faraday discovered that magnetism could

produce electricity. At about the same time, Joseph Henry of Albany, New York,

observed the effect independently. Henry also invented the electric telegraph and
refay.

Faraday's extensive experimental investigations enabled James Clerk
Maxwell, a professor at Cambridge University, England, to establish in a pro-
found and eclegant manner the interdependence of electricity and magnetism. In
his classic treatise of 1873, he published the first unified theory of electricity and
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magnetism and founded the science of electromagnetics. He postulated that light
was electromagnetic in nature and that electromagnetic radiation of other wave-

- |engths should be possible.

Maxwell unified electromagnetics in the same way that Isaac Newion
unified mechanics two centuries earlier with his famous Law of Universal Gravi-
tation governing the motion of all bodies both terrestrial and celestial.

Although Maxwell’s equations are of great importance and, with boundary,
continuity and other auxiliary reiations, form the basic tenets of modern electro-
magnetics, many scientists of Maxwell’s time were skeptical of his theories. It was
more than a decade before his theories were vindicated by Heinrich Rudolph
Hertz.

Early in the 1880s the Berlin Academy of Science had offered a prize for
rescarch on the relation between electromagnetic forces and dielectric polariz-
ation. Heinrich Hertz considered whether the problem could be solved with oscil-
lations using Leyden jars or open induction coils. Although he did not pursue
this problem, his interest in oscillations had been kindled and in 1886 as pro-
fessor at the Technical Institute in Karlsruheé he assembled apparatus we would
now describe as a complete radio system with an end-loaded dipole as transmit-
ting antenna and a resonant square loop antenna as receiver.! When sparks were
produced at a gap at the center of the dipole, sparking also occurred at a gap in
the nearby loop. During the next 2 years, Heriz extended his experiments and
demonstrated refiection, refraction and polarization, showing that except for their
much preater length, radio waves were one with light. Hertz turned the tide
against Maxwell around.

Hertz's initial experiments were conducted at wavelengths of about & meters
while his later work was at shorter wavelengths, around. 30 centimeters. Figure

1-1 shows Hertz's earliest 8-meter system and Fig. 1-2 a display of his apparatus,
including the cylindrical parabolic reflector he used at 30 centimeters.

Although Hertz was the father of radio, his invention remained a labora-
tory curiosity for nearly a decade until 20-year-old Gugliclmo Marconi, on a
summer vacation in the Alps, chanced upon a magazine which deseribed Hertz’s
experiments. Young Guglielmo wondered if these Hertzian waves could be used
10 send messages. He became obsessed with the idea, cut short his vacation and
rushed home to test it.

In spacicus rooms on an upper floor of the Marconi mansion in Bologna,
Marconi repeated Hertz's experiments. His first success late one might so elated
him he could not wait until morning to break the news, so he woke his mother
and demonstrated his radio systvm to her.

Marconi quickly went on to add tuning, big antenna and ground systcms
for longer wavelengths and was able to signal over large distances. In m1§—
December 1901, he startied the world by announcing that he had received radio

! His dipole was called a Hertzian dipole and the radio waves Hertzian waves.

r
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Figwe I-I Heinrich Hertz's complete radio system of 1886 with end-loaded dipole Lransmitiing
antenna (C'C) and resonant loop receiving antenna tabed) for 4 > 8 m. With induction coil |4} turned
on, sparks at gap B induced sparks at M in the loop receiving antenna. (From Heinrich Hertz's book
Electric Waves, Macmillun, 1893 redrawn with dimensions added )

Figure 1-2 Hertz‘sl sphere-loaded /2 dipole and spark gap iresting on floor in foreground] and
cylindrical parabolic reflector for 30 centimeters (standing at lefi). Dipole with spark gap is on the
parabola focal axis. (Phetograph by Edward €. Jordan.)
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signals at St. John's, Newfoundland, which had been sent across the Atlantic
from a station he had built at Poldhu in Cornwall, England. The scientific estab-
lishment did not believe his claim because in its view radio waves, like light,
should travel in straight lines and could not bend around the earth from England
to Newfoundland. However, the Cable Company believed Marconi and served
him with a writ to cease and desist because it had a monopoly on transatlantic
communication. The Cable Company’s stock had plummeted following
Marconi's announcement and it threatened to sue him for any loss of revenue if
he persisted. However, persist he did, and a legal battle developed that continued
for 27 years until finalty the cable and wircless groups merged.

One month after Marconi’s announcement, the American Institute of Elec-
irical Engineers (AIEE) held a banquet at New York’s Waldorf-Astoria to cele-
brate the event. Charles Protius Steinmetz, President of the AIEE, was there, as
was Alexander Graham Bell, but many prominent scientists boycotted the
banguet. Their theories had been challenged and they wanted no part of it.

Not long after the banquet, Marconi provided irrefutable evidence that
radio waves could bend around the earth. He recorded Morse signals, inked
automatically on tape, as received from England across almost all of the Atlantic
while steaming aboard the S5 Philadelphia from Cherbourg to New York. The
ship's captain, the first officer and many passengers were witnesses.

A year later, in 1903, Marconi began a regular transatlantic message service
between Poldhu, England, and stations he built near Glace Bay, Nova Scotia,
and South Wellfleet on Cape Cod.

In 1901, the Poldhu station had a fan aerial supported by two 60-meter
guyed wooden poles and as receiving antenna for his first transatlantic signals at
§t. John's, Marconi pulled up a 200-meter wire with a kite, working it against an
array of wires on the ground. A later antenna at Poldhu, typical of antennas at
other Marconi stations, consisted of a conical wire cage. This was held up by four
massive self-supporting 70-meter wooden towers (Fig. 1-3). With inputs of 50
kilowatts, antenna wires crackled and glowed with corona at night, Local
residents were sure that such fireworks in the sky would alter the weather.

Rarely has an invention captured the public imagination like Marconi’s
wireless did at the turn of the century. We now call it radio but then it was
wireless: Marconi's wireless. After its value at sea had been dramatized by the S§
Republic and S5 Titanic disasters, Marconi was regarded with a universal awe
and admiration seldom matched. Before wireless, complete isolation enshrouded
a ship at sea. Disaster could strike without anyone on the shore or nearby ships
being aware that anything had happened. Marconi changed all that. Marconi
became the Wizard of Wireless.

Although Hertz had used 30-centimeter wavelengths and Jagadis Chandra
Bose and others even shorter wavelengths involving horns and hollow wave-
guides, the distance these waves could be detected was limited by the technology
of the period so these centimeter waves found little use until much later. Radio
developed at long wavetengths with very long waves favored for long distances. A

'POpular “rule-of-thumb” of the period was that the range which could be
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Figare 1-3 Square-cone antenna at Marconi's Poldhu, England, siation in 1905. The 70-meter

wouoden towers support a network of wires which converge to a point just above the transmitting and |

receiving buildings between the towers.

achieved with adequate power was equal to 500 times the wavelength, Thus, for a-
range of 5000 kilometers, one required a wavelength of 10000 meters.

At typical wavelengths of 2000 to 20000 meters, the antennas were a small |

fraction of a wavelength in height and their radiation resistances only an ohm or
less. Losses in heat and corona reduced efficiencies but with the brute power of
many kilowatts, significant amounts were radiated. Although many authorities

favored very long wavelengths, Marconi may have appreciated the importance of °

radiation resistance and was in the vanguard of those advocating shorter wave-
lengths, such as 600 meters. At this wavelength an antenna could have 100 times
its radiation resistance at 6000 meters.

in 1912 the Wireless Institute and the Society of Radio Engineers merged to

form the Institute of Radio Engineers." In the first issue of the Institute’s Pro- |

ceedings, which appeared in January 1913, it is interesting that the first article
was on antennas and in particular on radiation resistance. Another Proceedings
article noted the youthfulness of commerciai wireless operators. Most were in
their late teens with practically none over the age of 25. Wireless was definitely a
young man’s profession.

The era before World War 1 was one of long waves, of spark, arc and

alternators for transmission; and of coherers, Fleming valves and De Forest

! In 1963, the Institute of Radio Engineers and the American Institute of Electrical Engineers merged
te form the Institute of Electrical and Electronic Engineers {IEEE).
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audions for reception. Following the war, vacuum tubes became available for
transmission; continuous waves replaced spark and radio broadcasting began in
the 200 to 600-meter range.

Wavelengths less than 200 meters were considered of little value and were
relegated to the amateurs. In 1921, the American Radio Relay League sent Paul
Godley to Europe 10 try and receive a Greenwich, Connecticut, amateur station
operating on 200 meters. Major Edwin H. Armstrong, inventor of the super-
heterodyne receiver and later of FM, constructed the transmitter with the help of
several other amateurs. Godley set up his receiving station near the Firth of
Clyde in Scotland. He had two receivers, one a 10-tube superheterodyne, and a
Beverage a_ménna. On December 12, 1921, just 20 years to the day after Marconi
received his first transatlantic signats on a very long wavelength, Godley received
messages from the Connecticut station and went on to log over 30 other U.S.
amateurs. It was a breakthrough, and in the years that followed, wavelengths
from 200 meters down began to be used for long-distance communication.

Atmospherics were the bane of the long waves, especially in the summer.
They were less on the short waves but still enough of a problem in 1930 for the
Bell Telephone Laboratories to have Karl G. Jansky study whether they came
from certain predominant directions. Antennas for telephone service with Europe
might then be designed with nulls in these directions.

Jansky constructed a rotating 8-element Bruce curtain with a reflector oper-
ating at 14 meters (Fig. 1-4). Although he obtained the desired data on atmo-
spherics from thunderstorms, he noted that in the absence of all such static there
was always present a very faint hisslike noise or static which moved completely
around the compass in 24 hours. After many months of observations, Jansky

Figure 14 Karl Guthe Jansky und his rotating Bruce curlain anléenna with which he discovered
Jadic emission from our galaxy. (Courtesy Bell Telephone Laboratories: Jansky inset courtesy Mary

Tansky Striffter.)
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coacluded that it was coming from beyond the earth and beyond the sun. It was
a cosmic static coming from our galaxy with the maximum from the galactic
center. Jansky's serendipitous discovery of extraterrestrial radio waves opened a
new window on the universe. Jansky became the father of radio astronomy.
Jansky recognized that this cosmic noise from our galaxy set a limit to the

sensitivity that could be achieved with a short-wave receiving system. At 14 §

meters this sky noise has an equivalent temperature of 20000 kelvins. At centi-
meter wuvelengths it is less, but never less than 3 kelvins. This is the residual sky
background level of the primordial fireball that created the universe as measured
four decades later by radic astronomers Arno Penzias and Robert Wilson of the
Bell Telephone Laboratories at 4 site not far from the one used by Jansky.

For many years, or until afler World War II, only one person, Grote Reber,
followed up Jansky's discovery in a significant way. Reber constructed a 9-meter
parabolic reflector antenna {Fig. 1-5) operating at a wavelength of about 2 meters

which is the prototype of the modern parabolic dish antenna. With it he made |
the first radio maps of the sky. Reber also recognized that his antenna-receiver |

constituted a radiometer, i.e., a temperature-measuring device in which his recei-
ver response was related to the temperature of distant regions of space coupled to
his antenna via its radiation resistance.

With the advent of radar during World War I, centimeter waves, which
had been abandoned at the turn of the century, finally came into their own and
the entire radio specirum opened up to wide usage. Hundreds of stationary com-
munication sateltites operating at centimeter wavelengths now ring the earth as

though mounted on towers 36000 kilometers high. Our probes are exploring the |
solar system to Uranus and beyond, responding to our commands and sending |
back pictures and data at centimeter wavelengths even though it takes more than |

an hour for the radio waves to travel the distance onc way. Our radio tciescopes

operating-at millimeter to kilometer wavelengths receive signals from objects so

distant that thc waves have been traveling for more than 10 billion years.

With mankind’s activities expanding into space, the need for antennas will |
grow to an unprecedenied degree. Antennas will provide the vital links to and

from everything out there. The future of antennas reaches to the stars.

i-3 ELECTROMAGNETIC SPECTRUM. Continuous wave energy radi-
ated by antennas oscillates at radio frequencies. The associated free-space waves
range in length from thousands of meters at the long-wave extreme to fractions of
a millimeter at the shorl-wave extreme. The relation of radio waves to the entire
electromagnetic spectrum is presented in Fig. 1-6. Short radio waves and long
infrared waves overlap into a twilight zone that may be regarded as betonging to
both.

The wavelength A of a wave is related to the frequency f and velocity v of |

the wave by

{n

13 ELECTROMAGMETIC SPECTRUM 9

Figure 1-5 Grote Reber and his parabolic reflector antenna with which he made the first radio maps

of the sky. This anlenna, which he built in 1938, is the prototype of the modern dish antenna. (Reber
inset courtesy Arthur C. Clarke))
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Figure 1.6 The electromagnetic spectrum with wavelength on a logarithmic scale frem the shortest
gamma rays to the tongest radio waves. The atmospheric-ionospheric epacity is shown at the top
with the optical and radio windows in evidence.

Thus, the wavelength depends on the velocity ¢ which depends on the medium. In
this sense, frequency is a more fundamental quantity since it is independent of the
medium. When the medium is free space (vacuum)

v=ec=3x 108 ms! (2)

Figure 1-7 shows the relation of wavelength to frequency for ¢ = ¢ (free ]

space). Many of the uses of the spectrum are indicated along the right-hand edge
of the figure. A more detailed frequency use listing is given in Table 1-1.

1.4 DIMENSIONS AND UNITS

Band
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Table 1-1 Radio-frequency band designations

Frequency Wavelength Band desigration

3-300 Hz 10-1 Mm ELF {extremely low frequency)
300-3000 Hz 1 Mm-100 km

3-30 kHz 10010 km VLF (very low frequency)
30-300 kHz 10-1 km LF (low frequency)

300--3000 kHz 1 km-100 m MF (medium frequency)

3-30 MHz 100-10 m HF {high frequency)

30-300 MHz 10-1m VHF (very high frequency)
300-3000 MHz | m~10 cm UHF (ultra high frequency)
130 GHz 10-1 e SHF (super high frequency)
30-300 GHz 1 cn-1 mm EHF (extremely high frequency)
300-3000 GHz 1 mm~100 pam

Frequency Wavelenyth IEEE Radar Band designation
1-2 GHz 30-15 cm L

2-4 GHz 1575 cm s

3-8 GHz 7.5-3.75 ¢m C

8-12 GHz 375250 cm X

12-18 GH: 2.50-1.67 cem Ku

1827 GHz 1.67-1 11 cm K

2740 GHz 1.1 ¢m-7.5 mm Ka

40-300 GHz 7.5-1.0 mm mm

Wavelength {far v=—c)

Figure 1-7  Wavelength versus frequency for v = c.

1-4

Example of wavelength for a given I'requency For a freguency of 300 MHz the cor-
responding wavelength is given by

¢ 3x10ms !
e _3x10°mst_ )
T 010 H S ™ ®)

In a jossiess nonmagnetic dielectric medium with relative permittivity £, = 2, the
same wave has a velocity

c 3 x 108

U=—=__212X10 Iﬂsl {4}

NOERING)

v 212 x 10%
l=—=——0707 = 707 5
and 77300 x 10° - — ©)

DIMENSIONS AND UNITS. Lord Kelvin is reported to have said:

When you can measure what you are speaking about and express it in numbers you
know something about it; but when you cannol measure it, when you cannot
S£xpress it in numbers your knowledge is of a meagre and unsatisfactery kind; it may
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be the beginning ol knawledge but you have scarcely progressed in your thoughts to
the stage of science whatever the matter may be.

To this it might be added that before we can measure something, we must define
its dimensions and provide some standard, or referenge unit, in terms of which
the quantity can be expressed numerically,

A dimension defines some physical characteristic. For example, length, mass,
time, velocity and force are dimensions. The dimensions of fength, mass, time,
electric current, temperature and luminous intensity are considered as the funda-
mental dimensions since other dimensiens can be defined in terms of these six.
This choice is arbitrary but convenient. Let the letters L, M, T, I, & and #
represent the dimensions of length, mass, time, electric current, temperature and

luminous intensity. Other dimensions are then secondary dimensions. For 1
example, area is & secondary dimension which can be expressed in terms of the

fundamental dimension of length squared {£2). As other examples, the fundamen-
tal dimensions of velocity are L/T and of force are ML/T2.

A unit is a standard or reference by which a dimension can be expressed 3
numerically. Thus, the meter is a unit in terms of which the dimension of length 1
can be expressed and the kilogram is a unit in terms of which the dimension of |
mass can be expressed. For example, the length (dimension) of a steel rod might }

be 2 meters and its mass {dimension) 5 kilograms.

1-5 FUNDAMENTAL AND SECONDARY UNITS. The uvnits for the
fundamental dimensions are called the fundamental or base uniis. In this book the

International System of Units, abbreviated SI, is used.! In this system the merer. |
kilagram, second, ampere, kelvin and candela are the base units for the six funda- §
mental dimensions of length, mass, time, electric current, temperature and lumin-

ous intensity. The definitions for these fundamental units are:

Metér (m). Length equal to 1650763.73 wavelengths in vacuum corresponding to

the 2p, ,-5d, transition of krypton-86.

Kilogram (kg}. Equal to mass of international prototype kilogram, a platinum-
iridium mass preserved at Sévres, France. This standard kilogram is the only artifact

amang the SI base units.

Second (s). Equal to time duration of 9 192631 770 periods of radiation correspond- 1
ing to the transition between two hyperfine levels of the ground state of cesivm-133.

The second was formerly defined as 1/86 400 part of a mean solar day. The earth's

rotation rate is gradually stowing down, but the atomic {cesium-133) transition is 1

! The International Systern of Units is the modernized version of the metric system. The abbreviation .
SI is from the Fremnch name Systéme Internationale &' Unités. For the complete official deseription of |

the system see U.S. Naul. Bur. Stand. Spec. Pub. 330, 1971.
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much more constant and is now the standard. The two standards differ by about 1
second per year.

Ampere {A). Electric current which if flowing in two infinitely long parallel wires in
vacuum separated by 1 meter produces a force of 200 nanonewtons per meter of
length{200nNm ! =2 x 107" Nm™¥).

Kelvin (K). Temperarure equai to 1/273.16 of the triple point of water {or triple
point of water equals 273.16 kelvins).!

Candela {cd). Luminous intensity equal to that of 1/600000 square meter of a perfect
radiator at the temperature of freezing platinum.

The units for other dimensions are called secondary ot derived units and are
based on these fundamental units.

The material in this book deals principally with the four fundamental
dimensions length, mass, time and electric current (dimensional symbols L, M, T
and I). The four fundamental units for these dimensions are the basis of what was
formerly called the meter-kilogram-second-ampere {mksa) system. now a sub-
system of the SI. The book also includes discussions of temperature but no refer-
ences to luminous intensity.

The complete Sl involves not only units but also other recommendations,
one of which is that multiples and submuitiples of the SI units be stated in steps
of 10* or 107? Thus, the kilometer (1 km = 10 m) and the millimeter (1
mm = 10~ m) are preferred units of length, but the centimeter {=10"2 m} is not.
For example, the proper Sl designation for the width of motion-picture film is
35 mm, not 3.5 cmi.

In this book rationalized SI units are used. The rationalized system has the
advantage that the factor 4n does not appear in Maxwell’s equations (App. A),
although it does appear in certain other relations. A complete table of units in
this system is given in the Appendix of Electromagnetics, 3rd ed,, by J. D. Kraus
{McGraw-Hill, 1984} :

1-6 HOW TC READ THE SYMBOLS AND NOTATION. In this
book guantities, or dimensions, which are scalars, like charge @, mass M or resis-
tance R, are always in italics. Quantities which may be vectors or scalars are
boldface as vectors and italics as scalars, e.g., electric field E {vector) or E (scalar).
Unit vectors are always boldface with a hat {circumflex) over the letter, e.g., X
or i.2

' Note that the symbol for degrees is not used with kelvins, Thus, she boiling temperature of water
(100" Cr is 373 kelvins {373 K, nor 373°K. However, the degree sign is retained with degrees Celsius.

* In longhand notation a vector may be indicated by a bar over the letter and hat { ) over the unit
YECTOT.
-
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Units are in roman type, ¢, not italic; for example, H for henry, s for
second, or A for ampere.! The abbreviation for a unit is capitalized if the unit is §
derived from a proper name; otherwise it is lowercase (small letter). Thus, we
have C for coulomb but m for meter. Note that when the unit is written out, it is §
always lowercase even though derived from a proper name. Prefixes for units are §
also roman, like n in nC for nanocoulomb or M in MW for megawatt.

Example 1. D=%200pC m™?

means that the electric Aux density D is a vector in the positive x direction with a
magnitude of 200 picocoulombs per square meter (=2 x 107 '® coulomb per square}
meter). {

Example 2. F=I10¥

means that the voltage V equals 10 volts. Distinguish carefully between V {italics)]
for voltage, V {roman) for volts, ¥ {lowercase, boldface} lor velocity and v {lowercase,
italics) for volume,

Example 3. S=4Wm *Hz™'

means that the flux density § (a scalar) equals 4 watts per square meter per herz.]
This can also be written § = 4 W/m?/Hz or 4 W/im? Hz), but the form W m ™ ]
Hz ™' is more direct and less ambiguous.

Note that for conciscness, prefixes are used where appropriate instead of]
exponents. Thus, a velocity would be expressed in prefix form as v = 215 Mm s~ Y
(215 megameters per second) not in the exponential form 2.15 x 10®* m s 1]
Howevcer, in solving a problem the exponential would be used although the final
answer might be put in the prefix form (215 Mm s ™'}

The modernized metric {S1) units and the conventions used herein combine
to give a concise, exact and unambiguous notation, and if one is attentive to the
details, it will be seen to possess both clegance and beauty. ’

1-7 EQUATION NUMBERING. Important equations and those referred
to in the text are numbered consecutively beginning with each section. When
reference is made to an equation in a different section, its number is preceded by
the chapter and section number. Thus, {14-15-3) refers to Chap. 14, Sec. 15/
Eq. (3). A reference to this same equation within Sec. 15 of Chap. 14 would read
simply (3). Note that chapter and section numbers are printed at the top of cach]

page.

' In longhand notation no distinction is usvally made between guantities (italics and units roman}
However, it can be done by placing a bar under the letier to indicate i1alics or writing the letter with aj
distinet slant,
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1-8 DIMENSIONAL ANALYSIS. It is a necessary condition for correct-
ness that every equation be balanced dimensionally. For example, consider the
hypothetical formula

M
— =0A
L
where M = mass
L = length
D = density (mass per unit volume)
A = area

The dimensional symbois for the left side are M/L, the same as those used. The
dimensional symbols for the right side are

M, M
B L

Therefore, both sides of this equation have the dimensions of mass per length,
and the equation is balanced dimensionally. This is not a guarantee that the
equation is correct; i.e, it is not a sufficient condition for correctness. It is,
however, a necessary condition for correctness, and it is frequently helpful to
analyze equations in this way to determine whether or not they are dimensionally
balanced.

Such dimensional analysis i1s also useful for determining what the dimensions
of a quantity are. For example, to find the dimensions of force, we make use of
Newton’s second law that

Force = mass x acceleration

Since acceleration has the dimensions of length per time squared, the dimensions
of lorce are

Mass x length
Time?

or in dimensional symbols

M
Force = ?
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CHAPTER

BASIC
ANTENNA
CONCEPTS

2-1 INTRODUCTION. The purpose of this chapter is to provide intro-
ductory insights into antennas and their characteristics. Following a section on
definitions, the basic parameters of radiation resistance, temperature, pattern,
divectivity, gain, beam area and aperture are introduced. From the aperture
concept it is only a few steps to the imnportant Friis transmission formula. This is
followed by a discussion of sources of radiation, field zones around an antenna
and the effect of shape on impedance. The sources of radiation are illustrated for
both transient (pulse) and continuous waves. The chapter concludes with a dis-
cussion of polarization and cross-field.

2.2 DEFINITIONS. A radio antenng' may be defined as the structure
associated with the region of transition between a guided wave and a free-space
wave, Or vice versa.

In connection with this definition it is also useful to coasider what is meant
by the terms transmission line and resonator.

A transmission line is a device for transmitting or guiding radio-frequency
energy from one point to another. Usually it is desirable to transmit the energy

" In its zoological sense, an antenna is the leeler, or organ of wuch, of an insecl. According 10 usage
in the United States the plural of “insect antenna ™ is * antennae,” but the plural of " radic antenna ™
is " gntennas.”

17
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with a minimum of attenuation, heat and radiation losscs being as small as pos-
sible. This means that while the encrgy is being conveyed from one point to
another it is contined to the transmission line or is bound closely to it. Thus, the
wave transmitted along the line is I-dimensional in that it does not spread out
into space but follows along the line. From this general point of view one may
extend the term transmission line (or transmission system) to include not only
coaxial and 2-wire transmission lines but also hollow pipes, or wareguides.

A generator connected to an infinite. lossless transmission line produces a
uniform traveling wave along the line. If the line is short-circuited, the outgoing
traveling wave is reflected, producing a standing wuve on the line due to the
interference between the outgoing and reflected waves. A standing wave has
associated with it local concentrations of energy. if the reflected wave is equal to
the outgoing wave, we have a pure standing wave, The energy concentrations in
such 2 wave oscillate from entirely electric to entirely magnetic and back twice
per cycle. Such energy behavior is characteristic of a resenant circuit, or reson-
ator. Although the term resonator, in its most general sense, may be applied to
any device with standing waves, the term is usually reserved for devices with
stored energy concentrations that are large compared with the net flow of energy
per cycle.! Where there is only an outer conductor, as in a short-circuited section
of waveguide. the device is called a cavity resonator.

Thus. antennas radiate {or receive) energy, transmission lines guide eneryy,
while resonators store energy.

A guided wave traveling along a transmission line which opens out, as in
Fig. 2-1, will radiate as a free-space wave, The guided wave is a plane wave while
the free-space wave is a spherically expanding wave. Along the uniform part of
the line, energy is guided as a plane wave with little loss, provided the spacing
between the wires is a small fraction of a wavelength. At the right, as the trans-
mission itne separation approaches a wavelength or more, the wave tends to be
radiated so that the opened-out line acts like an antenna which launches a free-
space wave. The currents on the transmission line flow out on the transmission
linc and end there, but the fields associated with them keep on going. To be more
explicit. the region of transition between the guided wave and the free-space wave
may be defined as an gntenna.

We have described the antenna as a transmitting device. As a receiving
device the definition is turned around, and an antenna is the region of transition
between u free-space wuve and a puided wave. Thus, an antenna is a transition
device, or transducer, between a guided wave and a free-space wave, or vice bersa.?

While transmission lines (or waveguides) are usually made so as to mini-

' The ralio of the energy stored to that lost per cycle is proportional to the (0, or sharpness of
resonance of the resonalor (see Sec. 6-12).

 We note that antenns parameters, such as impedance or gain, require that the antenna terminals be
specified.
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E lines

Transmission line
| ~ —- — —-
Generator
of
rransmitter
L8 g -’

Guided {TEM} wave

One dimensional wave «—
-Free space wave
radiating in

three dimensions

Transition region
or antenna

Figure 2-1 The anlenna is a region of transition between a wave guided by_a transmissicn Im; an}? la
free-space wave. The transmission line conductor separation is a small fraction of a wavelength while
the separﬁtion at the open end of the transition region or antenna may be many wavelengths. More

generally, an antenng interfaces hetween electrons on conductors and photons in space. The eye 1s
;

another such device.

mize radiation, antennas are designed to radiate (or receive) energy as effectively
® pos';lt?:cz.imcnna, like the eye, is a transformation device converting electromqg-
netic photons into circuit currents; but, unli_ke thf: cye, thciamel_ma can also
convert energy from a circuit into photons radiated into space. In simplest terms
a1 anlenng converts photons to currents or vice versa. . .
Consider a transmission line connected Lo a dipole’ antenna as in Fig. 2-2.
The dipole acts as an antenna because it launches a free-spac? wave. Howcveé‘,c;t
may alsa be regarded as a section of an open-ended transmission line. In addi-
tion, it exhibits many of the characteristics of a resonator, since energy reflected
fmrr,l the ends of the dipole gives rise to a standing wave and energy storage near
the antenna. Thus, a single device, in this case the dipole, exhibits simultaneously
properties characteristic of an antenna, a transmission line and a resonator.

2.3 BASIC ANTENNA PARAMETERS. Refcrring to Fig. 2-2, Fhe
antenna appears from the transmission line as a 2-terminal circuit elcm‘ent having
an impedance Z with a resistive component called the radiation resistance R, .

' A photon is the quantum unit of electromagnetic energy equal to hf. whers o = Planck™s constant
[ =663 x 1073* 1 5} and f = {frequency (Hz).

Y A positive electric charge ¢ separated a distunce from an equal bpl negalive charge f:ohnsulutq az
vlectric dipole. If the separation is I, then gl is the dipole moment. A lingar conduclor Whlcd, at aag;:eas
instant, has a positive charge at one end and an equal but negative charge at the other en Tiy act a8
4 dipole antenna. (A loop may be considered ta be a magnetic dipole antenna of moment IA,
{ — loop current and 4 = loop areal)

L4
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{/Pree space wave
i T ipole

Generator antenna

~] o™ —— Anterna impedance =2
Transmission lineg T at terminals

Cutgoing and —"™
refiected waves

on antenna \‘

Figure 2.3 The antenna launches a Iree-space wave but appears as a circuit itnpedance 10 the trans-
mission line,

while from space, the antenna is characterized by its radiarion patiern or paiterns
involving field quantities, !

The radiation resistance R, is not associated with any resistance in the
antenna proper but is a resistance coupled from the antenna and its environment
to the antenna terminals, Radiation resistance is discussed in Secs, 2-13 and 2-14
and further in Chap. 5.

Associated with the radiation resistance is also an antenna temperature T,.
For a lossless antenna this lemperature has nothing to do with the physical tem-
perature of the antenna proper but is related to the temperature of distant
regions of space (and nearer surroundings) coupled to the antenna via jts radi-
ation resistance. Actually, the antenna temperature is not so much an inherent
property of the antenna as it is a parameter that depends on the temperature of
the regions the antenna is *looking at.” In this sense, a Teceiving antenna may be
regarded as a remote-sensing, temperature-measuring device (see Chap. 17).

Both the radiation resistance R, and the antenna temperature T, are single-
valued scalar quantities. The radiation patterns, on the other hand, involve the
variation of field or power (proportional to the field squared} as a function of the
two spherical coordinates 8 and ¢.

24 PATTERNS. Figure 2-3a shows a field pattern where r is proportionat to
the field intensity at a certain distance from the antenna in the direction 8, $. The
pattern has its main-lobe maximum in the z direction (8 =0) with minor lppes
{side and back) in other directions. Between the lobes are nulls in the directions
of zero or minimum radiation.

! Fields and radiation. An electromagnetic wave consists of electric aad magnetic fields propagating
through space, a field being a region where electric or magnetjc forces act. The electric and magnetic
fields in a frec-space wave traveling cutward at a large distance from an antenna convey enerpy called
radiatian,

24 paTvERNs 21
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Figure 2-3 (a) Antenna field pattern with coordinate system. (4 Almenm p;)\;:r_g:ltt:l:;;mm o
wf)rdinatcs {linear scale). {c) Amenna pattern in rectangutar coordinates and deci

scale. Patterns (b} and (c) are the same.

To completely specify the radiation -pattern with respect to field intensity
and polarization requires three patterns:

1. The  component of the electric field as a function of the angles 8 and ¢ or

Edf, ¢} (Vm™") ‘
2. T;(e ¢ component of the electric field as a function of the angles & and ¢ or

Ey B, $)(Van™")
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3. The phases of these fields as a function of the angles  and ¢ or &,(8, ¢) and
340, ¢) (rad or deg)

Dividing a field component by its maximum value, we obtain a normalized
field pattern which is a dimensionless number with & maximum vaiue of unity,
Thus, the normalized field pattern for the ¢ component of the electric field is
given by :

Eq(8, ¢)
Eelf, §lpan

At distances that are large compared to the size of the antenna and large com-
pared to the wavelength, the shape of the field pattern is independent of distance.
Usually the patterns of interest are for this Jar-field condition (see Chap. 18).

Patterns may also be expressed in terms of the power per unit area [or
Poynting vector S(8, ¢)] at a certain distance from the antenna.! Normalizing
this power with respect to its maximum value yields a normalized power pattern
as a function of angle which is a dimensionless number with a mazximum value of
unity. Thus, the normalized power pattern is given by

5(8, )
50, ®lnax

where S(6, $) = Poynting vector = [EX(8, ¢) + E8, $))/Zy, W m ™2
50, #)max = maximum value of $(9, ¢), W m ™2
£, = intrinsic impedance of space = 376.7 Q

EyD, ¢), =

{dimensionless) (1

P8, = (dimensionless) {2)

Any of these field or power patterns can be presented in 3-dimensional spherical
coordinates, as the field pattern in Fig. 2-3q, or by plane cuts through the main-
tobe axis. Two such cuts at right angles, called the principal plane patterns (as in
the xz and yz planes in Fig. 2-3a), may suffice for a single field component, and if
the pattern is symmetrical around the z axis, one cut is sufficient. Figure 2-3& is
such a pattern, the 3-dimensional pattern being a figure-of-revolution of it
around the main-lobe axis (similar to the pattern in Fig. 2-3a). To show the
minor lobes in more detail, the same pattern is presented in Fig. 2-3¢ in rectangu-
lar coordinates on a decibel scale, as given by

dB = 10 log,, P,(0, ¢) 3)

Although the radiation characteristics of an antenna involve 3-dimensional
patterns, many important radiation characteristics can be expressed in terms of
simple single-valued scalar quantities. These include:

Beam widths, beam area, main-lobe beam agrea and beam efficiency;
Directivity and gain;
Effective aperture, scattering aperture, aperture efficiency and effective height,

! Although the Poynting vector, as the name implics, is a vector (with magnitude and direction), we
use here its magnitude, its ditection in the far ficld being radially outward.
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Aoxc or of
circle
/ area A of
sphere
‘ﬂ Center ot
sphere
N\
Salid angle
suhtended
L) by area A M

Figure 2-4 {a) Arc length r0 of circle of radius » subtends an angle f. (5) The area 4 of a sphgre of
radius r subtends a solid angle £2.

2.5 BEAM AREA (OR BEAM SOLID ANGLE). The arc of a c.:ircle as
seen from the center of the circle subtends an angle. Th}ls, rcfer'rmg to Fig. 2-4a,
the arc length @r subtends the angle #. The total angle in the circle is 2n rad {or
160°) and the total arc length is 2nr (=circumference).

! An area A of the surface of a sphere as seen from the center of the sphere
subtends a solid angle Q (Fig. 2-4b). The total solid angle subtended by the sphere

is dr steradians (or square radians), abbreviatgd ST. ‘ '
Let us discuss solid angle in more detail with the aid of Fig. 2-5. Here the

incremental area dA of the surface of a sphere is given by
dA = (r sin 6 d¢)r d8) = r? sin 6 d8 d¢p = r* dQ 1)
where d{} = solid angle subtended by the area 44

The area of the strip of width r df extending around the sphere at a con-
stant angle @ is given by (2nr sin 6) (r 48). Inteprating this for 6 values fromO0tor
vields the area of the sphere. Thus,

Area of sphere = 2zr? j sin 6 df = 2rr?[ —cos 0% = dnr? (2)
0

where 4 1 = solid angle subtended by a sphere, st
Thus,

1 steradian = | sr = (solid angle of sphere)/(4n}
2 .
=1rad? = (@) (deg?) = 3282.8064 square degrees 3
n

Therefore,

4 steradians = 3282.8064 x 4z = 41252.96 = 41 253.square degrees

. = solid angle in a sphere “
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Polar angle

rsind de

rdi

Area dA =r?sin 8§ df dy
=r!d 0, where
R = solid angle
= sin & 48
This strip has area dﬂ \ o @
=2rrsinfr d4¢
¥

¢_‘__,.-
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Figure 2-5 Spherical coordinates in relation to the area d.4 of solid angle 453 = sin B 48 d¢.

Now the beam area (or beam solid angle) (2, for an antenna is given by the
integral of the normalized power pattern over a sphere {4r sr) or

Q, = J’ ’ J'P,(ﬂ. Hda (s )
[+ 1]
where dQ = sin 8 d@ d¢

Referring to Fig, 2-6, the beam area Q, of an actual pattern is equivalent to

the same solid angle subtended by the spherical cap of the cone-shaped
(triangular cross-section) pattern.

Equivalent solid
angle i,

Actual pattern of
beam area 2,

Half-power
beam width é,;;

Figwre 2-6 Cross section of symmetrical power pattern
of antenna showing equivalent solid angle for a cone-
shaped {triangular] pattern.
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This solid angle can often be described approximately in ter_ms_of the angles
subtended by the hailf-power points of the main lobe in the two principal planes as
given by

€, =~ 0pdwe  (s) ]

where 8,p and ¢y are the half-power beam widt_hs {HPBW) in the two principal
planes, miror lobes being neglected. .

2.6 RADIATION INTENSITY. The power radiated from an antenna per
unit solid angle is cailed the radiation intensity U {wath per stn_aradlan or per
square degree). The normalized power pattern of the previous section can also be
expressed in terms of this parameter as the ratio of the radiation intensity U(8, ¢),
as a function of angle, to its maximum value. Thus,
U, S(9, ¢)
Pi6, ) =P (1
U0, Plpax S8, Phac

Whereas the Poynting vector § depends on the distance from _the gnt;nna
(varying inversely as the square of the distance), the radiati01_1 intensity U is inde-
pendent of the distance, assuming in both cases that we are in the far field of the
antenna (see Sec. 2-35).

2.7 BEAM EFFICIENCY. The (total) beam area Q, {or _beam solid angle)
consists of the main beam area (or soiid angle) Q;, plus the minor-lobe area (or
solid angle) 2,,.! Thus,

£, =0y +Qm (1)

The ratio of the main beam area to-the (total) beam area is cailed the (main) beam
efficiency &y . Thus,

tay = M _ peam efficiency @
Q,
The ratic of the minor-lobe area (Q,) 1o the {total) beam area is called the stray
Jactor. Thus,

By = L = stray factor ()]
A

Tt follows that
' Eyten=1 (4)

U If the main beam is not bounded by a deep null its cxtent becomes an arbitrary act of judgment.
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2-8 DIRECTIVITY. The directivity D of an antenna is given by the ratio of

the maximum radiation intensity (power per unit solid angle} Ui, ¢),,, to the

average radiation intensity U,, (averaged over a sphere). Or, at a certain distance

from the antenna the directivity may be expressed as the ratio of the maximum to .

the average Poynting vector. Thus,

Ulh, d)oax SO, @)ax :
D= = _N S¢} (dimensionless) (1)

av av

Il

Both radiation intensity and Poyntin
g vector values should be m i
far field of the antenna (see Sec. 2-35). casured in the

Now the average Poynting vector over a sphere is given by

l in x
S, ¢ = - L f S@. ¢)dr  (Wm"?) ) |
Thus, the directivity
_ 1 1
I .” S0.¢) 4" 1Ll ¥
4n | ] S8, ¢),.. 47 -”. A0, ) 02
. s |
_ Q, : @

The smaller the beam solid angle, the greater the directivity.

29 EXAMPLES OF DIRECTIVITY. If an antenna could be isot

(radiate the same in all directions) ropic
PiB, d)=1  (for all § and ¢) (1)

then Q, — 4n o

and D=1 ®

This is the smallest directivity an antenna can have. Thus, 2, must always be !

equal to or less than 4rn, while the directivit
A , y D must always be equal
greater than unity. ’ anal foor

) Neglecting the effect of minor lobes, we have from {2-8-3) and (2-5-6) the
simple approximation’ - :
4x - 41 000

D o=~ ~
B br Bip P @

' dmar =

41253 square degrees. Since (4) is an approximation 41 253 is rounded off to 41 000,
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where 8, = balf-power beam width in # plane, rad
¢yp = half-power beam width in ¢ piane, rad

%p = half-power beam width in 8 plane, deg

épp = hali-power beam width in ¢ plane, deg

fquation (4) is an approximation and should be used in this context. To avowd
inappropriate usage, sec the discassion following Eg. (17 of Sec. 3-13.
If an antenna has a main lobe with both half-power beam widths
(HPBWs) = 207, its directivity from (2-8-4) and {2-5-6} is approximately
_ da(sr) 41000 {deg?) 41000 (deg?)
T Q1) Hedte 0 200 x 20°
~ 103 ~ 20 dBi (dB above isotropic) 3

which means that the antenna radiates a power in the direction of the main-lobe
maximum which is about 100 times as much as would be radiated by a nondirec-
tional {isotropic) antenna for the same power input.

2-10 DIRECTIVITY AND GAIN, The gain of an antenna (referred to a
lossless isotropic source} depends on both its directivity and its efﬁ_c_iency.‘ If the
efficiency is not 100 percent, the gain is less than the directivity. Thus, the gain

G=kD {(dimensionless) (1)
where k = efficiency factor. of antenna (0 < k < 1}, dimensionless

This efficiency has to do only with ohmic losses in the antenna. In transmitting,
these losses involve power fed to the antenna which is not radiated but heats the
antenna structure.

2-11 DIRECTIVITY AND RESOLUTION. The resolution of an
antenna may be defined as equal to half the beam width between first nulls
(BWFN/2).2 For example, an antenna whose pattern BWFN =2° has a
resolution of 1° and, accordingly, should be able to distinguish between transmit-
ters on two adjacent satellites in the Clarke geostationary orbit separated by t°.
Thus, when the antenna beam maximum is aligned with one satellite, the first
null coincides with the other satellite.

! When gain is used as a single-valued quanlity (ke directivity) ils maximum nose-on main-beam
value is implied in the same way that the power rating of an engine implies its maximum value.
Multiplying the gain G by the normalized power pattern P (8, ¢) gives the gain as a function of angle.

2 Often cailed the Rayleigh resolution. See Sec. 11-23 and also J. D. Kraus, Radio Astroromy, 2od ed.,
Cygnus-Quasar, 1986, pp. 6-19.
L4
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Half the beam width between first nulls is approximately equal to the haif-

power beam width (HPBW) or
BWFN

~ HPBW (1}

so from (2-5-6) the product of the BWFN/2 in the two principal planes of the

antenna patiern is a measure of the antenna beam area.t Thas,

BWFN\ /BWFN
e (M) () !

It then follows that the number N of radio transmitters ot point sources of radi-

ation distributed uniformly over the sky which an antenna can resolve is given

approximately by

4n '
N = — 3 4
a, (3) {
where 2, = beam area, sr
However, from (2-8-4),
dn "
= — 4}
. @

and we may conclude that ideaily the number of point sources an antenna can 4

resolve is numerically equat to the directivity of the antenna or

D=N 5}

Equation (4) states that the directivity is equal to the number of beam areas into

which the antenna pattern can subdivide the sky and (5) gives the added signifi-

cance thal the directivity is equal to the number of point sources in the sk v that the

antenna car resolve under the assumed ideal conditions of a uniform source dis-
tribution.?

2-12 APERTURE CONCEPT. The concept of aperture is most simply
introduced by considering a rteceiving antenna. Supposc that the receiving
antenna is an electromagnetic horn immersed in the field of a uniform plane wave
as suggested in Fig. 2-7. Let the Poynting vector, or power density, of the plane
wave be § watts per square meter and the area of the mouth of the horn be 4

! Usually BWFN/2 is slightly greater than HPBW and from (3-13-18) we may conclude that (2) is
actuaily a better approximation to £, than 0, = By, ¢y, a3 given by (2-5-6).

% A strictly regular distribution of points on a sphere is onily possible for 4, 6, §, 12 and 20 points
corresponding to the vertioes of a tetrahedron, cube, octahedron, isoahedron and dodecahedron,
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Direcuinn of propaganon
of plane w?ve

Figure 2-7 Plane wave incident on electromagnetic horn of mouth aperture 4.

square meters. If the horn extracts all the power from the wave over its entire
arca A, then the total power P absorbed from the wave is

P =354 {W) (i}

Thus, the electromagnetic horn may be regarded as an aperture, the total power
it extracts from a passing wave being proportional to the aperture or urea of its
mouth.

It will be convenient to distinzuish between several types of apertures,
namely, effective aperrure, scatiering aperture, loss aperture, collecting t_iperrure
and physical aperture. These different types of apertures are defined and discussed
in the following sections.

In the following discussion it is assumed, unless otherwise stated, that the
antcnna has the same polarization as the incident wave and is oriented for
maximum response.

2-13 EFFECTIVE APERTURE. Consider a dipole receiving antenna (472
or less) situated in the field of a passing electromagnetic wave as suggested in
Fig. 2-8a. The antenna collects power from the wave and delivers it to the termi-
nating or lead impedance Z; connected to its terminals. The Poynting vector, or
power density of the wave, is § watts per square meter. Referring to the equiva-
lent circuit of Fig. 2-8k, the antenna may be replaced by an equivalent or Théve-
nin generator having an equivalent voltage 1 and internal or equivalent antenna
impedance Z,. The voltage ¥ is induced by the passing wave and produces a
current I through the terminating impedance Z, given by

Vv

= o—
Zy+2Z,

1}

where [ and V are rms or effective values.
,
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Dipole
antenna

s

Incident
wave
-] direction
Zr ——
] Figure 2-8 Schematic diagram of
Terminating dipole  antenna  terminated in ¢
impadance impedance Z, with plane wave |

(a) (Y3 alent circuit {).

In general, the terminating and antenna impedances are complex ; thus

Zy=Ry+jXr {2}!
and Z,=R,+jX, 3) 1

The antennia resistance may be divided into two parts, a radiation resistance R,

and a nearadiative or loss resistance R, , that is,

R,=R,+R, (@)
" Let the power delivered by the antenna to the terminating impedance be P. Then §
P =R, (5]

From {1), (2) and (3), the current magnitude
I V
VAR + R+ Ry (X + X o)

Substifuting {6) into (5) gives
P V2R,
R+ R+ R +(X,+ X))

The ratio of the power P in the terminating impedance to the power density of _'

the incident wave is an area 4. Thus,

vl
It
ha

where P = power in termination, W
$ = power density of incident wave, W m -
A = area, m?

2

If § is in watts per square wavelength (W 47%) then A is in square wavelengths |

(%), which is often a convenient unit of measurement for areas.

incident on antenna {a) and eguiv- |

(6}

0

(8)
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Substituting (7) into (8} we have
a VIR,
SR, + R, + Ry +(X,+ X7

Unless otherwise specified, it is assumed that V is the induced voltage when the
antenna is oriented for maximum response and the incident wave has the same
polarization as the antenna. The value of 4 as indicated by (9} takes into account
any antenna losses as given by R, and any mismatch between the antenna and its
terminating impedance.

Let us consider now the situation where the terminating impedance is the
complex conjugate of the antenna impedance {terminal or load impedance
matched to antenna) so that maximum power is transferred. Thus,

Xr=—-X, (t0)
and R;=R,+R; nn

9N

Introducing {10) and (11) in (9) yields the ¢ffecrive aperture A, of the antenna,
Thus,
V2

A =——" 2 ‘_). 2
. AR, + Ry {m* or A%} {12)

If the antenna is lossless (R, = 0) we obtain the maximum effective aperture 4,, of
the antenna. Thus,

¥V 2

A_ =
&m 4SR,

tm? or A% k)]

The aperture 4, given by (13} represents the arca over which power is
extracted from the incident wave and delivered to the load.

Sometimes the terminating impedance is not located physically at the
antenna terminals as suggested in Fig. 2-8. Rather. it is in a receiver which is
connected to the antenna by a length of transmission line. 1n this case Z; is the
cquivaleat impedance which appears across the antenna terminals. [l the trans-
mission line is lossless, the power delivered to the recciver is the same as that
delivered 1o the equivalent terminating impedance 7, . I the transmission line
has attenuation, the power delivered to the receiver is less than that delivered to
the equivalent terminating impedance by the amount lost in the line,

2-14 SCATTERING APERTURE. In the preceding section we discussed
the effective area from which power is absorbed. Referring to Fig. 2-85. the
voltuge induced in the antenna produces a current through both the anienna
impedance Z, and the terminal or load impedance Z,. The power P absorbed
by the terminal impedance is, as we have seen, the square of this current times the
teal part of the load impedance. Thus, as given in (2-13-5), P = I’R, . Let us now
mquire into the power appearing in the antenna impedance Z, . The real part of




32 2 BASIC ANTENNA CONCEPTS

this impedance R, has two parts, the radiation resistance R, and the loss resist-
ance R; (R, = R, + R;). Therefore, some of the power that is received will be
dissipated as heat in the antenna, as given by

P = IR, (1)

The remainder is “dissipated ™ in the radiation resistance, in other words, is
reradiated from the antenna. This reradiated power is

P’ =I'R, (2)

This reradiated or scattered power is analogous to the power that is dissipated in
a generator in order that power be delivered to a load. Under conditions of
maximum power transfer, as much power is dissipated in the generator as is
delivered to the load.

This reradiated power may be related to a scatiering aperture or scattering
cross section. This aperture A, may be defined as the ratio of the reradiated
power to the power density of the incident wave. Thus,

. P
A. = scattering aperture = 5 (3)
VIR,

where P"=1R, = . 4

(R,+R,+ R+ (X, +XpP @
When R, = 0, and R; = R, and X; = — X, for maximum power transfer,' then
VZ
A=
* 4S8R, )

or the scattering aperture equals the maximum effective aperture, that is,
Ay = A (6)

Thus, ynder conditions for which maximum power is delivered to the terminal
impedance, an equal power is reradiated from the receiving antenna.?

Now suppose that the load resistance is zero and X; = — X, (antenna
resonant]. This zero-load-resistance condition may be referred to as a resonant
short-circuit (RSC) condition. Then for RSC the reradiated power is

VZ

p=t- 0 |

R

r

' Anienna tnatched.

? Referring to Fig. 2-8a, note that if the direction of the incident wave changes, the scattered power .«

could increase while V decreases. However, Z, remains the same.
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Tranamitting
antenna | .
e Receiving
antenna
Transmitter Figure 2-% 42 dipole antenna receiving (and
reradiating) power from A/2 dipole transmiuting
antenna.
and the scattering aperture becomes
VZ
4= @
s~ 3R, }
or ' A, =44, 9

Thus, for the RSC condition, the scattering aperture of the antenna is 4 times as
great as its maximum effective aperture.

Figure 2-0 shows two 4/2 dipoles, one transmitting and the other receiving.
Let the receiving antenna be lossless (R, = 0). Consider now three conditions of
the receiving antenna:

1. Antenna matched
2. Resonant short circuit
3. Antenna-open-circuited (Z = oc)

For condition 1 (antenna matched), 4, = A, but for condition 2 (resonant short
cirenit), A, = 44, and 4 times as much power is scattered or reradiated as under
condition 1.

Under condition 2 (resonant short circuit), the * receiving ™ antenna acts like
a scatterer and, if close to the transmitting antenna, may absorb and reradiate
sufficient power to significantly alter the transmitting antenna radiation pattern.
Under these conditions one may refer to the “receiving™ antenna as a parasitic
element. Depending on the phase of the current in the parasitic element, it may
act either as a director or a reflector (see Sec. 11-9a). To control its phase, it may
be operated off-résonance (X r # — X ,), although this also reduces its scattering
aperture.

For condition 3 (antenna open-circuited), f =0, A, = Oand 4, = 0.!

' This is an idealization. Although the scatlering may be small it is not zero. See Table 17-2 for
scattering from short wires.
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Relative aperture

0] i i n I T T &
[+ I 2 3 4 ) 6 7 B 2 10 resistance R, /R, of a small .
Rr antenna. It is assumed that R, = |

Relative terminal resistance,
R, X,=X;=0

To summarize:
Condition 1, antenna matched: A=A,
Condition 2, resonant short circuit: A4, =44,
Condition 3, antenna open-circuited: A, =A4,=0

The ratio A,/A,,, as a function of the relative terminal resistance R;/R, is__
shown in Fig. 2-10. For R,/R, =0, A/A,, = 4, while as R;/R, approaches infin-§

ity (open circuit), A /A, approaches zero.

The rafio of the scattering aperture to the effective aperture may be called §

the scattering ratio f, that is,

. . A
Scattering ratio = ;5 =8

L4

The scattering ratio may assume values between zero and infinity (0 < § < o0),

For conditions of maximum power transfer and zero antenna losses, the
scattering ratio is unity. If the terminal resistance is increased, both the scattering’
aperture and the effective aperture decrease, but the scattering aperture decreases

. more rapidly so that the scattering ratio becomes smaller. By increasing the ter-
minal resistance, the ratio of the scattered power to power in the load can be]
made as small as we please, although by so doing the power in the load is also

reduaced.

the antenna as illustrated in Fig. 2-11-1.

Although the above discussion of scattering aperture is applicable to
single dipole (4/2 or shorter), it does not apply in general. (See Sec. 2-18. Sec also

Sec. 17-5)

Figure 2-190 Variation of effective 3
aperture A,, scatiering aperture A4, 3
and collecting aperture A, as z §
function of the relative terminal 3

(dimensionless) (10),_’

The reradiated or scattered field of an absorbing antenna may be con-J
sidered as interfering with the incident field so that a shadow may be cast behind-_
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f —- — —

— —_— —_

Anterna

e
|mzident -
plane < - Shadow:
wave — Scattered

/ waves
—
—_— —_— —_—
Figure 2-11-1 Shadow cast by a
_— —- ——#=  receiving antenna.

2-15 LOSS APERTURE. If R, is not zero [k # 1 in (2-10-1)], some power
is dissipated as heat in the antenna. This may be related to a loss aperture A,
which is given by

I’R, VIR,

A - =
L S SR, + Ry + R ¥ + (X, + Xp)*]

(1.

2.16 COLLECTING APERTURE, Three types of apertures have now
been discussed: effective, scattering and loss. These three apertures are related to
three ways in which power collected by the antenna may be divided: into power
in the terminal resistance (effective aperture); into heat in the antenna (loss
aperture); or into reradiated power (scatiering aperture}). By conservation of
energy the total power collected is the sum of these three powers. Thus, adding
these three apertures together yields what may be called the collecting aperture as
given by

Y VIR, + R, + Ry)
¢ S[R, + Ry + Ry +{X 4+ Xp*]
The variation of 4, with Ry/R, for the case of 4, = Ois shown in Fig. 2-10.

=4 + A, + A, (1)

2-17 PHYSICAL APERTURE AND APERTURE EFFICIENCY. It
is often convenient to speak of a fifth type of aperture called the physical aperture
4,. This aperture is a measure of the physical size of the antenna. The manner in_
Whmh it is defined is entirely arbitrary. For example, it may be defined as the
physical cross section (in square meters or square wavelengths) perpendicular to
the direction of propagation of the incident wave with the antenna oriented for
maximum response. This is a practical definition in the case of many antennas,
For example, the physical aperture of an electromagnetic horn is the area of its
mouth, while the physical aperture of a linear cylindrical dipole is the cross-
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sectional area of the dipole. However, in the case of a short stub anienna
mouited on an airplane, the physical aperture coyld be taken as the cross:]
sectional area of the stub or, since currents associated with the antenna may flow.
over the entire surface of the airplane, the physical aperture could be taken as the
cross-sectional area of the airplane. Thus, the physical aperture has a simple,
definite meaning only for some antennas. On the other hand, the effective aper-
ture has a definite, simply defined value for all antennas. !

The ratio of the effective aperture to the physical aperture is the aperture
efficiency ,,. that is, '

ap {dimensionless) (1)

-l

Although aperture efficiency may assume valﬂes between zero and infinity, if
cannot exceed unity for large {in terms of wavelength) broadside apertures.

2-18 SCATTERING BY LARGE APERTURES. In Sec. 2-14 it wag
shown that the scattering aperture of a single dipole was equal to the (maximum
effective aperture for the condition of a (conjugate} match and 4 times as muchy
for a resonant short circuit. For a large broadside aperture A (dimensions » AJ
matched to a uniform wave, all power incident on the aperture can be absorbed
over the area A, while an equal power is forward-scattered. Thus, the total cold
lecting aperture is 24. If the large aperture is a nonabsorbing perfectl y conducting
flat sheet the power incident on the area 4 is backscattered while an equal powe:
is forward-scattered, yielding a scattering (and collecting) aperture 24. In thig
case the scattering aperture may be appropriately called a rotal scattering crosy
section (o), as done in Sec. 17-5. The absorbing and scattering conditions for &
large aperture are now discussed in more detail.

. The intrinsic impedance Z, of free (empty) space is 377 Q (= \.-fm]f It is o
pure resistance Ry (Z, = Ry + jO). This intrinsic resistance takes on more physi
significance when we consider the properties of a resistive sheet with a resistan ced
of 377 Q per square.? Sheets of this kind (carbon-impregnated paper or cloth) a ,
often called space paper, space cloth or Salisbury sheets or screens.? A squarel
piece of the sheet measures 377 Q between perfectly conducting bars clamped
along opposite edges as in Fig. 2-11-2. For this measurement the size of the sheet]
makes no difference provided only that it is square. Although the term ohms per
square is appropriate, the quantity is dimensionally that of resistance (ohms), no#§
ohms per square meter.

' More precisely, \/uofey = igc = 376.7304 (1, where st = 4% X 1077 H m™" (by definition) an
¢ = velocity of Yight.

* 1. D. Kraus, Electromagmezics, 3rd, ed., McGraw-Hill, 1984, p. 459.
? See also further discussion in Sec. 18-3c.
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waital
377 D;gl{a

Square ohmmeter

sheet 0f

space

o nth

Figure 2-11-2  Space cloth has a
resistance of 377 £1 per square.

Consider now what happens when a plane wave is incident normally on an
infinite sheet of space cloth (Fig. 2-11-3qa). Taking the electric field intensity of the
incident wave E; =1 V m™!, the field intensity of the transmitted wave contin-
uing to the right of the sheet is '

2 Z L 2 R 0_."“2

— .l w1 {l]
Z, + 7o {Ro/21+ R

2
o = 1E, = ==-¥m
E, =1L, 3

= mitrinsic resistance of space = 377 Q
Z, = load impedance = space cloth in parallel with space behind it
= Ry/2
7 = transmission coefficient = £

=
=
m
be]
]
=
=1

|

Sheet
/ of space cloth
1
1
E=1 E=i | E=} (@)
— - —_—
—_— -t e
‘neident Reflected | Transmitted
wave wave | wave
1
V=1 V.=} V,=3 Figure 2-11-3 (@) A plane wave
- - —_ traveling to the right incident nor-
mally on an infinite sheet of space
Infinite lossless (&) cloth is partially teflected, partially

transmission ling absorbed and partially transmit-

\ ted. (#) Analogous transmission-
Load resistance line arrangement.

Characteristic
resistance m
Ro
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The electric field intensity of the reflected wave traveling to the left of the
sheet is '
Z,—Zy _Ro/D—Ry 1 '-
Z,+2Z, RoD+Ry 3' 0 2

where p = reflection coefficient = —4

E,=pE{=

It is apparent that a sheet of space cloth by itself is insufficient to termingted
an incident wave withowt reflection. This may also be seen by considering the
analogous lossless transmission line arrangement shown in Fig. 2-11-35, where]
the load resistance R, is in paralle] with the line to the right with characteristigy
resistance R;. 1

For both space wave and transmission line, § [=(4)*] of the incideny
power is reflected or scattered back, # { =(4)?) of the incident power is transmitd
ted or forward-scattered and the remaining £ absorbed in the space cloth or load§
If the area of the space cloth equals A, then the effective aperture A, = $4 and
the scattering aperture A, = 4. _

In ordér to completely absorb the incident wave without reflection or trans
mission, let an infinite petfectly conducting sheet or reflector be placed parallel to
the space cloth and A/4 behind it, as portrayed in Fig. 2-11-4a. Now the imped
ance presented to the incident wave at the sheet of space cloth is 377 Q, being th J
impedance of the sheet in parallel with an infinite impedance. As a consequencey
this arrangement results in the total absorption of the wave by the space cloth.S
There is, however, a standing wave and energy circulation between the cloth and
the conducting sheet and a shadow behind the reflector. 1

The analogous transmission-line arrangement is illustrated in Fig. 2-11-4
the /4 section (stub) presenting an infinite impedance across the load R, . _

In the case of the plane wave, the perfectly conducting sheet or reflector
effectively isolates the region of space behind it from the effects of the wave. In anj
analogous manner the shorting bar on the transmission line reduces the waves
beyond it to a small value.

When the space cloth is backed by the reflector the wave is matched. In a]
similar way, the line is matched by the load R, with 4/4 stub.® '
; A transmission line may also be terminated by placing a resistance acrossy
jthe line which is equal 1o the characteristic resistance of the line, as in Fig}

'2-11-3b, and disconnecting the line beyond it. Although this provides a practicall
method of terminating a transmission line, there is no analogous counterpart inj
the case of a space wave because it is not possible to “disconnect” the space to
the right of the termination. A region of space may only be isolated or shielded §
as by a perfectly conducting sheet.? :

' 1. D. Kraus, Electromagnetics, 3td ed., McGraw-Hitl, 1984, pp. 461-462.
2 The stub length can differ from 4/4 provided the load presents a conjugate match.
3 The spacing of the transmission line is assumed to be small (1) and radiation negligible,
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Figure 2-11-4 {a) A plane wave traveling to the right in_cidenl no
cloth backed by an infinite perfectly conducting reflecting sheeTt,
without reflection. (#) Analogous transmission-ling arrangement 1n w
1s completely absorbed in the load without reflection.

rmally on an infinite sheet of space
as shown, is completely absorbed
hich a wave traveling to the right

“f the space cloth reflector area A4 is lurge {dimensions > 2} but not inﬁnit.e
in extent the power incident on A is absorbed (as in the infinite case} but there 1§

now scattering of an equal power so that the total collecting aperture A4, is twice

A or
Ar——-Ae+As=2A

H i
where A, = effective aperture = 4, m ,
A_ = scattering aperture = A, m

Thus, as much power is scattered as is absorbed (maximum power transfer
condition) (4, = 4.). ‘

If only the flat perfectiy conducting reflector of area A is present (no spacg
cloth), the wave incident on the reflector is backscattered instead of abso'rbed an
the wave is totally scattered (half back, half forward) so that the collecting aper-
ture is all scattering aperture and equal to 24 (4, = 24 =g, see Tgblg 17-1, last
row, celumn 3). In both cases {with and without space c!oth.) the incident wave
Srant is disturbed and the energy flow redirected over an area twice the area A.
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Absorption is also possible by methods othet than the single space cloth

technique as, for example, using thick {multiple space cloth) or other absorbing |

structures as discussed in Sec. 18-3¢. These structures, as well as a single space
cloth, constitute a distriputed load. The above conclusions regarding large, but
not infinite, apertures also apply to a large uniform broadside array of area A
connected to a lumped lead or a uniformly iHuminated parabolic reflector of area A
with power brought to a focus and delivered to a lumped load. In all cases
{distributed load, broadside array and parabolic reflector), the effective aperture

A, = A (= physical aperture A4,) and the scattering aperture A, also equal A |

(= A,). The aperture efficiency in these cases is given by

which is the maximum possible value (100 percent efficiency) for large broadside 1

antennas. In theory, the 100 percent limit might be exceeded slightly by using

supergain techniques. However, as shown by Rhodes,” the practical obstacles are
enormous, In practice, less than 100 percent efficiency may be necessary in order }
to reduce the sidelobe level by using tapered (nonuniform) aperture distributions. |
Accordingly, large aperture antennas are commonly operated at 50 to 70 percent '3

aperture efficiency.

The single dipole and the large-area antenna may be considered to rep-
resent two extremes as regards scattering, with other antenna types intermediate. §
Table 2-1 summarizes the scattering parameters for large space cloth or array §

apertures, for transmission lings and for a single dipole (4/2 or shorter).

2-19 EFFECTIVE HEIGHT. The effective height h (meters) of an antenna |
is another parameter related to the aperture. Multiplying the effective height by §
the incident field E {volts per meter) of the same polarization gives the voltage V |

induced. Thus,

V = hE (1 ]
Accordingly, the effective height may be defined as the ratio of the induced |

voltage to the incident field or
Y
E

h:

Consider, for example, a. vertical dipole of h?ng_lh 1'_= A2 immelrsed in an
incident field E, as in Fig. 2-12a. If the current distribution of tht? dipole were
uniform ifs effective height would be I The actual current distribution, however,

is nearly sinusoidal with an average value 2/r = 0.64 {of the maximum) so that jts |

! D R. Rhodes, “On an Optimu.m Line Source for Maximum Dircctivity,” JEEE Trans 4n;s Prop.,
AP-19, 485-492, 1971,

(m) 2 !
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Table 2-1 Scattering parameterst

Transmission Dipole

Condition Space cloth (or array) line (Fig. 2-8)
Malched Space cloth (or array) Load R, with A=A,
iFig. 2-i1-4) with reflector, area 4 /-4 stub

A=A, =4 No power reflected

=24 All power into load

Short Reflector anly, area A All power reflecied A, =44,
circuit A, =24=gq, No power in (resonant)

A, =D termination

A, =24
Load only Spuce cloth only, area infinite Load R, only . No dipole

{Fig. 2-11-3} 11% power backscatiered I1% power reflected
44% power forward-scattered 44 power transmitted
44% absorbed 444, power in load

Open circuil No cloth or reflector No power reflected A, ~ 0%
A, =0 All power transmitted A, =0
A,=0

t Aperture values assume orcnlation for maximum resp polatizatio tched and load conjugale-

natched. Uniform aperture response or distribation is assumed for the large areas A {dimensions @ i}
The tr ission line is d 1o be lossless, the spacing small | < .4} and radiation effccts negligible.
1 Scattering small but not zere.

effective height h=0.64 /. It js assumed that the antenna is oriented for
maximum [esponse.

If the same dipole ts used at a longer wavelength so that it is only 0.14 long,
the current tapers atmost linearly from the central feed point to zero at the ends
in a triangular distribution, as in Fig. 2-12h. The average current is 4 of the
maximum so that the effective height is5 0.5 1,

—_— .::’\T {=00A
incident Sinusoidal
field ™ current Triangular
/ distribution current
/ - distribution
(@} Average (5)
current -

Figore 2-12 {a) Dhpole of length | = 4/2 with sinusoidal current distribution. (b} Dipole of length
f'= 0.1 with triangular current distribution,
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Thus, another way of defining effective height is to consider the transmit-
ting case and equate the effective height to the physical height {or length {) multi-
plied by the (normalized) average current or

L L |
h, = E fz) dz = 1 h, {m) (3)

G [+]

where h, = effective height, m
h, = physical height, m
I,. = average current, A

It is apparent that effective height is a useful parameter for transmitting
tower-type antennas.® It also has an application for smalt antennas. The param-
eter effective aperture has more general application to all types of antennas. The
two have a simple relation, as:will be shown,

For an antenna of radiation resistance R, matched to its load, the power
delivered to the load is equal to

. 1V? pE? !
P=ir-aw W @
In terms of the effective aperture the same power is given by
E*A, |
P=54,= W) (5) 1

where Z, = intrinsic impedance of space (=377 Q)
Equating (4) and (5) we obtain

R A, hZ,
h¢=2 —Z'o— (m} and _ A,— 4R,

Thus, effective height and effective aperture are related via radiation resistance |

and the intrinsic impedance of space.

2-20 MAXIMUM EFFECTIVE APERTURE OF A SHORT |
DIPOLE. In this section the maximum effective aperture of a short dipole with }
uniform current is calculated. Let the dipole have a length ! which is short com- |
pared with the wavelength (/ < 1). Let it be coincident with the y axis at the °

! Effective height can also be expressed more generally as # vector quantity. Thys {for lines

polarization} we can write
V=h'.5=h,£mﬂu
where b, = effective height and polarization angle of antennd, m X

E — field intensity and polarization angle of incident wave, V.M~
# = angle between polarization angles of antenna and Wave, deg

In a still more gencral expression (for any polarization state), ¢ is the angle between Polarization .
states on the Poincaré sphere {see Sec. 2-36). 5

(m?) ©) |
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Dir_ect_ion i ¥
of incident 7 Short
wave dipole
Figure 2-13 Short dipole with vntform current
X induced by incident wave.

origin as shown in Fig. 2-13, with a plane wave traveling in the negative x direc-
tion incident on the dipole. The wave is assumed to be linearly polarized with E
in the y direction. The current on the dipole is assumed constant and in the same
phase over its entire length, and the terminating resistance R, is assumed equal
io the dipole radiation resistance R,. The antenna loss resistance R, is assumed
equal to zero. .-

The maximum eflective aperture of an antenna is obtained from (2-13-13) as

VZ
App =
48R

r

)
where the effective value of the induced voltage V is here given by the product of
the effective electric field intensity at the dipole and its length, that is,

V=El 2)

The radiation resistance R, of a short dipole of length [ with uniform current will

be shown later (in Sec. 5-3) to be?
801:2:2 ! 2 I F I 2
R = =i = el N 4 3
ox (fa) ?90(10) («1) « g
where 1 = wavelength

I,, = average current
1, = términal current

The power density, or Poynting vector, of the incident wave at the dipole is
related to the field intensity by

I

EZ
S=— ()

where Z = intrinsic impedance of the medium

! This relation for the radiation resistance of a short dipole was worked out by Max Abraham in
1904 an¢ R. Rudenberg in 1908, It is very clearly set forth in Jonathan Zenneck's texlbook editions of
1905 and 1908 and its English translation, Wireless Techrology, MoGraw-Hill, 1915.
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In the present case, the medium is free space so that Z = 120r . Now substitut--
ing (2), (3) and (4) into (1), we obtain for the maximum effective aperture of a i

short dipole (for I,, = I,;)
A = 120rE22 32 _ 3
" 320nEN Ba

Equation (5) indicates that the maximum effective aperture of a short dipole is
somewhat more than % of the square wavelength and is independent of the J

length of the dipole provided only that it is smali (! < 1). The maximum effective

aperture neglects the effect of any losses, which probably would be considerable _
for an actual short dipole antenna. If we assume that the terminating impedance -
is matched to the antenna impedance but that the antenna has a loss resistance
equal 1o its radiation resistance, the effective aperture from (2-13-12) is § the ]

maximurn effective aperture obtained in (5).

2-21 MAXIMUM EFFECTIVE APERTURE OF A LINEAR A2
ANTENNA. As a further iliustration, the maximum effective aperture of a |
linear A/2 antenna will be calculated. It is assumed that the current has a sinu- |
soidal distribution and is in phase along the entire length of the antenna. It is
further assumed that R; = 0. Referring to Fig. 2-14a, the current { at any point y §

is then

2y

I =7,c08 == . (1)

A

A plane wave incident on the antenna is traveling in the negative x direction. The 4
wave is linearly polarized with E in the y direction. The equivalent circuit is §
shown in Fig. 2-14b. The antenna has been replaced by an equivalent or Théve- 3
nin generator. The infinitesimal voltage dV of this generator due to the voltage §

. dvV Ry

a1
&

¥
[ 8 . ] n |
| Y T ¥ Ry
Incident Ry i
wWave
b)

(@)
Figure 2-14  Linear /2 antenna in field of electromagnetic Weve {s) and equivalent ciroy; (b).

A2 =0.11942 (5) §
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Lingar &/2

antenna
hid
} hi2
ot

@) )

Figure 2-15 {a) Maximum effective aperture of linear 4/2 antenna is approximately represented by
rectangle 4 by 14 on a side. (b} Maximum effective aperture of linear i/2 antenna represented by
elliptical area of 01342

induced by the incident wave in an infinitesimal element of length dy of the
antenna is

dV = E dy cosz—;g (2)

It is assumed that the infinitesimal induced voltage is proportional to the current
at the infinitesimal element as given by the current distribution {1).

The total induced voltage V is given by integrating (2) over the length of the
antenna. This may be written as

Ard
V=2J. Ecosz—rfydy {3)
o A
Performing the integration in (3) we have
Ei
V==
- 4

The value of the radiation resistance R, of the linear /2 antenna will be taken as
73 §1.! The terminating resistance Ry is assumed equal to R,. The power density
at the antenna is as given by (2-20-4). Substituting (4}, (2-20-4) and R, = 73 into
{2-13-13), we obtain, for the maximum effective aperture of a linear 4/2 antenna,

1202E212 30 ,
ey e TR T )

Comparing (5} with (2-20-5), the maximum effective aperture of the linear A/2
antenna is about 10 percent greater than that of the short dipole.

The maximum effective aperture of the 1/2 antenna is approximately the
same as an area 1 by 11 on a side, as illustrated in Fig. 2-13a. This area is 342,
An elliptically shaped aperture of 0.134? is shown in Fig 2-15b. The physical

* The derivasion of this value is given in Sec. 5-6.
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significance of these apertures .js that power from the incident plane wave is ]

a.bsorbejd over an area of this sizé by the antenna and is delivered to the termina-
ting resistance.

_ A _typical thin 1(2 antenna nzlay have a conductor djameter of 734, so that i
its physical aperture is only g&54%. For such an antenna the maximum effective |

aperture of 0.134% is about 100 times larger.

2-22 EFFECTIVE APERTURE AND DIRECTIVITY. There is an }

injnporlant relation between effective aperture and directivity of all antennas as
will now be shown.

_ Consider the clef:tric_ field E, at a large distance in a direction broadside 10 a
radiating aperture as in Fig, 2-16. If the field intensity in the aperture is constant |

and equal to E, {volts per meter), the radiated power is given by

_|E

P
Z

where 4 = antenna aperture, m?
Z = intrinsic impedance of the medium, 0

The power radiated may also be expressed in terms of the field intensit y E, (volts {

per meter) at a distance r by

E,* :
p=El g, @ |

Z

where 2, = beam solid angle of antenna, st

It may be shown (Sec. t1-21) that the field intensities E, and E_ are related by
NEAL

B, === ® |

where A = wavelength, m

Substituting (3} in (2) and equating (1) and (2) yields

A7 = AQ, @)

where 4 = wavelength, m
A = antenna aperture, m?
{2, = beam solid angle, sr

4

; | &

Figare 2-16 Radiatiop
ture A with uniform fie|g £

A ) |

Irom aper- .:
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In (4) the aperture A is the physical aperture 4, if the field is uniform over the
aperture, as assumed, but in general A is the maximum effective aperture A,

{losses equal zero}. Thus,

We note that 4,,, is determined entirely by the antenna pattern of beam area (1.
According to this important relation, the product of the maximum effective aper-
ture of the anitenna and the antenna beam solid angle is equal to the wavelength
squared. Equation (5) applies to all untennas. From (5) and (2-8-4) we have that
4
D=3 Aum ©

when, for simplicity, 4, is substituted for 4, in (5) or {6), zero losses are
assumed. _

Three expressions have now been given for the directivity D of an antenna.

They are

U6, $nes _ SO, Pl
b= Ua\r B Sav {?}
4n
D= ITA (8)
4
D=§Am ©)

A (10)

2-23 BEAM SOLID ANGLE AS A FRACTION OF A SPHERE. A
short dipole with directivity D = 4 has a beam solid angle
4 2
n =— == 4 l

AT p T3 T (1)
Putting Q. = 4n = solid angle of a sphere, the dipoie beam solid angle

nA = %Qsph {2)
Thus, the dipole radiation pattern may be said to fill £ of a sphere. The larger the
directivity of an antenna, the smaller is the fraction of a sphere filled by its radi-
ation pattern. At the other extreme, a nondirectional (isotropic) antenna with
D =1 completely fills a sphere. This concept, emphasized by Harold A. Wheeler
{1964), provides an interesting way of looking at directivity and beam area.
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2-24 TABLE OF EFFECTIVE APERTURE, DIRECTIVITY,

EFFECTIVE HEIGHT AND OTHER PARAMETERS FOR |

DIPOLES AND LOOPS

Effective
Maximum  beight,
Raudiation effective meximun  Sphere Directivity
resistanced aperture value, fillinrg [
Anteana R,., Q. Ap s 22 A m fectr D D{dBi)
1
Tsotrapic — = 0.07% 1 1 0
4n
w2 1l i
Short dipole,t length | L Zo=01% - z 1 1.7
orl dipo eng B({ i, ) & T % H -]
Short dipole,t I = i/10 7.9 0119 A0 % 3 1.76
(I, =1g)
Short dipole,t I = i/10 198 0.119 Af20 £ 3 1.76
(e = o)
) e 30 i
Linear, 4/2 dipole 73 — =013 -—-=— 0.61 164 213
(sinusoidal current 73n T
distribution)
. AV 3 A
Small loop? (single turn), 31200 S — =019 2=Z % 3 176
any shape A 8x A
. 3 2ni N
Small square loop} (single  3.12 - =011% — 5 4 1.76
T

turn), side length = |

100
Area A = 12 = (/100 )

§ See Chaps. 5 and €.
1 Length | < 410,
t Area A 5 i%/104), see Sec. 6-8. For n-turn loop, multiply R, by a® and b by =

Although the radiation resistance, effective aperture, effective height and

directivity are the same for both receiving and transmitting, the current distribu-

tion is, in general, not the same. Thus, a plane wave incident on a receiving

antenna excites a different current distribution than a localized voltage applied to -_

a pair of terminals for transmitting,

2-25 FRIIS TRANSMISSION FORMULA. The usefulness of the aper-

ture concept will now be illustrated by using it to derive the important Frifs 1
transmission formula published in 1946 by Harald T. Friis of the Bell Telephone

Laboratories.!

Referring to Fig. 2-17, this formula gives the power received over a radio f'
communication circuit. Let the tranemitter T feed-a power P, to a transmitting ¥

' H. T. Friig, “A Notc on a Simplc Transmission Formula,” Proc. IRE, 3, 254-256, 1946,
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Transmitting Receiving

antanna / antenna

AP!\\ Aer -

T R

. ceiver
Transmitter Re

Figure 2-17 Communication circuit with waves from transmitting antenna arriving at the receiving
antenna by a direct path of length r.

antenna of effective aperture A,,. At a distance r a receiving antenna of effective
aperture A, intercepts some of the power radiated by the transmitting antenna
and delivers it to the receiver R. Assuming for the moment that the transmitting
antenna is isotropic, the power per unit area at the receiving antenna is
P
S, =—5 W 1
= W M
If the antenna has gain G,, the power per unit area at the receiving antenna will
be increased in proportion as given by

Pl’ Gt

= W A
=03 W) @
Now the power coligcied by the receiving antenna of effective aperture A, is
P.=54, =10k W) %)
4mr

From {2-22-10) the gain of the transmitting antenna can be expressed as

4rA,
G = T’ (4)
Substituting this in (3) yields the Friis transmission formula
At AG'
P, =P, r; = w) (3

where P, = received power (antenna matched), W
P, = power into transmitting antenna, W
A,, = effective aperture of transmitting antenna, m?
A,, = effective aperture of receiving antenna, m*
r = distance between antennas, m
A = wavelength, m

It is assumed that each antenna is in the far field of the other.
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Space
quantities

Ey0, o}

Circuit Field
guantities Antenna paiterns = E4l8, $)
Radiation

: Power A
resistance, R, patterns PoAe, ¢
Beam solid angle, €,
Directivity, D

Gain, &

Effective aperture, A,
Scattering aperture, 4,

Current
distribution

Antenna
temperature, 7,

Transition
region

Figure 2-18 Schematic diagram of basic antenna parameters, illustrating the duality of an antenna:’ _'
a circuil device (with a resistance and temperature) on the one hand and a space device {with radi- |
alion pallerns, beam angles, directivity, gain and aperture) on the other. ]

2-26 DUALITY OF ANTENNAS, The duality of an antenna, as a circuit3
device on the one hand and a space device on the other, is illustrated schemati-{
cally in Fig. 2-18, :

2-27 SOURCES OF RADIATION: RADIATION RESULTS FROM:
ACCELERATED CHARGES. A stationary electric charge does not radiate §
(Fig. 2-19a) and neither does an electric charge moving at uniform velocity along}
a straight wire (Fig. 2-195).! However, if the charge is accelerated, i.e., its velocity
changes with time, it radiates. Thus, as in Fig. 2-19¢, a charge reversing direction
on reflection from the end of a wire radiates. The shorter the pulse for a given]
charge, the greater the acceleration and the greater the power radiated, or, as in}
Fig. 2-19d, a charge moving at uniform velocity along a curved or bent wire is
accelerated and radiates. ]

Consider a pulse of electric charge moving along a straight conductor in the
x direction, as in Fig. 2-20. This moving charge constitutes a momentary electric§
current T as given by

=g, j—f (A (1)

where g, = charge per unit length, Cm ™!

! This can be seen from refativistic considerations, since, for an observer in a reference frap, moving}
with the charge, it will appear stationary. ]
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@ (w) Static electric charge
does not radiate.
v Electric charge moving with
e B ;
(&) uniform velocity along a
+F— straight wire does not
radiate.
\ / Howewver, when charge reaches
ﬁ"ﬂb () end of wire and reverses

direction it undergoes

acceleration and radiates.

The sharter or more compact
the pulse of charge, the

// stronger the radiation.

Electnc charge moving at uniferm
velocity v along a curved or

bent wire is accelerated and
radiates.

Electric charge oscillating back

and forth in simple harmonic motion
along a wire undergoes periodic
acceleration and radiates.

[4 i)

/‘/i- +\:\ )
Figure 2-19 A static electric charge or a charge moving with uriform velocity in a straight line does
not radiate. An acceleraled charge, however, does radiate.

Multiplying by the length [ of the pulse as measured along the conductor
gives

d
H:q,_!'—)f=qv-

A 2
h (A m) (2)
where g, [ = g = total charge of pulse, C
v = velocity, m s™!
Taking the time derivative
di d’x -
EIZQFZQU (Ams™h) 3

where ¢ = acceleration of charge, m s~ 2

Current
1) ———t
t+e++4 X
| —— —_—)
FIFEETE
g = ::haré;he pEr unit Figure 2-20 Charge pulse of uniform charge
eng

densily g, (per unit length) moving with velocity o
constitutes an electric current [.

—
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More concisely,

=gy AmsY | @ {

where [ = time-changing current, A s™*

[ = length of current element, m
g = electric.charge, C
# = acceleration, m s~ 2

This is the basic continuity relation between current and charge for electromagnetic
radiation. Since accelerated' charge (40) produces radiation, it follows [rom this §

equation that time-changing current (f) produces radiation. (Fig. 2-1%9¢). For tran- |

sients and pulses we usually focus on charge. For steady-state harmonic variation

we usually focus on current. Whereas a pulse radiates a broad spectrum (wide 3

bandwidth) of radiation (the shorter the pulse, the broader the spectrum), aj
smooth sinusoidal variation of charge or curtrent results in' a narrow bandwidth 3
of radiation (theoretically zero at the frequency of the sinusoid if it continues §
indefinitely). -'
It may be shown? that an accelerated charge radiates a power P as given }
by3 A

P=ETE () ]

where 4 = permeability of medium, H m ™!
g = charge, C -
¥ = acceleration, m s
Z = impedance of medium

-2

2-28 PULSED OPENED-OUT TWIN-LINE ANTENNAS. The ]
antenna of Fig. 2-1, shown again in Fig 2-21a, has two conductors each resem- 3
bling an Alpine-type horn used by Swiss mountaineers. The uniform §
transmission-line section at the left opens out until the conductor separation is a §
wavelength or more with radiation from the curved region forming a beam to the |
right. The conductor spacing-diameter ratio is constant, making the characteristic
impedance constant over a wide bandwidth. Since radiation occurs from nar-§
rower regions at shorter wavelengths, the radiation pattern tends to be relatively |

! Or decelerated.
2 L. Landau and E. Lifshitz, The Classical Theory of Fields, Addison-Wesley, 1951,
? Equivalent expressions are
243 252
g _ Bgtv W) b
bxec®  bme { (6)_
where ¢ = permittivity (F m™~ ) and c = velotity of light (m s~ ) .
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Curved
Unifarm section Section
::c-

Pulse
generator

Beam

al LT
t direction

1)

Electric

i fle|d

(]

Figure 2-21 Pulsed twin-line antenna. No
radiation occurs along the uniform section.
However, radiation occurs along the curved
portion and is maximum to the right, as sug-
gested by the mnforccment of the electric
fields.

ie)

constant.! These properties make the twin horn a basic broadband antenna.

Let us analyze the process of radiation from this antenna by considering
what happens when it is excited by a single short pulse which starts electric
charges moving to the right along the uniform transmission-line section at light
speed, There is no radiation as the charges travel along the uniform section at the

! However, the phase center moves to the right with decrcase in frequency.
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ation occurs (Fig. 2-216). The configuration of the resuiting electric field a short
time later is suggested in Fig. 2-21¢. Additional radiation occurs as the charges$
travel further, as shown in Fig. 2-214. Still later. after the charges reach the end of
the conductors, the fields are as suggested in Fig. 2-21¢. 1t is assumed that due tof
prior radiation, negligible radiation occurs on reflection of the charges from the
open end.! .

We note that the fields are additive and reinforce in the forward direction 3
(to the right} between the conductors while they tend to cancel elsewhere. This?
tendency is apparent in Fig. 2-21¢.

2-29 FIELDS FROM OSCILLATING DIPOLE. Although a charge]
moving with uniform velocity along a straight conductor does not radiate, a
charge moving back and forth in simple harmonic motion along the conductor isj
subject to acceleration (and deceleration) and radiates. 3

To illustrate radiation from a dipole antenna, let us consider that the dipolej
of Fig. 2-22 has two equal charges of opposite sign oscillating up and down in{
harmonic motion with instantaneous separation { (maximum scparation /) while]
focusing attention on the electric field. For clarity only a single electric field line
is shown. '

At time =0 the charges are at maximum separation and undergo;
maximum acceleration b as they reverse direction (F 1g. 2-22a). At this instant the
current I is zero. At an §-period later, the charges are moving toward each other]
(Fig. 2-22b) and at a i-period they pass at the midpoint (Fig. 2-220). As this]
happens, the field lines detach and new ones of opposite sign are formed. At this!
time the equivalent current I is a maximum and the charge acceleration is Zero. 4
As time progresses to a -period, the fields continue to move out as in Fig. 2-2241
and e, ;

An oscillating dipole with more field lines is shown in Fig. 2-23 at 4 instants]
of time. :

2-30 RADIATION FROM PULSED CENTER-FED DIPOLE]
ANTENNAS. Five stages of radiation from a dipole antenna are shown in
Fig. 2.24 resulting from a single short voltage puls; applied by a generator at the)
center of the dipole (positive charge to left, negative charge to right). The pulse/]
length is short compared 1o the time of propagation along the dipole. {

At the first stage [(a) top] the pulse has been applied and the charges are]
moving outward. The electric field lines between the charges expand |jke 5 soap
bubble with velocity » = ¢ in free space. The charges are assumed o move with ]

! With radiation from the curved section, the energy of the pulse decreases as encrgy j 0\
ation according to (2-27-5). Thus, stated another way, it is m‘“f“fl-‘h“ ‘?"e_ 10 prior radiagion losses, 4
negligible charge reaches the open end, being absorbed in radiation resistance, Energy o in radi-
ation resistance is energy radiated. '
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[ =max
i
-0 I' ' fa (=0 &)
“\Field line
" (=17 ()
t
1! '
f=max t=3T (o)
(=0 1
U
A
! *E) =37 )
[}
! *u
I = Mmax
I O I : . - . .
b (=T e) Figore 2-22  Oscillating electric dipole consisting
1 =35
1 1

of two electric charges in simple harmonic
motion, showing propagation of an electric field
line and its detachment (radiation) from the
dipole. Arrows next to the dipole indicate current

(1) direction.

velocity v = ¢ along the dipole. At the next stage [(4) middle]. the charges 1:at;:]h
the ends of the dipole, are reflected (bounce ba(_:k} and move inward lowlar 13
generator [(a) bottom]. If the generator is gn_:mpe_cl_an_ce match, the plrl SES ?tll-e
absorbed at the generator but the field lines join, imitiating a new‘pulse rom the
center of the dipole with the pulse fields somewhat later, as shown in (f_)). "
Maximum radiation is broadside to the dipole and zcrooon axis as with a
harmonically excited dipole. Broadside to the dipole (8 = 90 }. lhcl; _ls 63" sytrlt:-
metrical pulse triplet, but, at an angle such as 30° from broads@cl{ gec }, the
middle pulse of the triplet splits into two pulses so ‘that the trip ctf ome;s‘ha
quadruplet as shown in (b). Thus, the pulse pattern is a function of angle. The
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Charges moving cutward

Dipole /
\\
Expanding Pulse genarator

electric
field Pulse width
lines )
(a)
Dipolg — % E%
) £8=90°
—
1 1 Zy 9=60"
% 2 T 1
{ 3 l Pulse
2b train
Pulse fields
Dipoile

(23]
=
Figore 2-24 (4) Three stages of radiation from & center-fed dJPoIe amg_m-,a I'ollowing the application;
of a single short voltage puise at the terminals Showing expanding electric field lines of the pylse. Twef
lzter stages at (b) and (c} show the pulse trains of ¢lectric field (E,) bl'oadﬂde_ and 30 from broadsidd
to the dipole. The fields below the dipole [not shown in (4) and ()] are miror imagey of the fieldd
above, .
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Fulse trains

Fulse
fields

Dipole

time T between pulses 1 and 3 is the time required for the charges to travel out
and back from the generator. This is the same as the travel time over the length L
of the dipole, or

T = (1)

el e

Thus, the dipole length determines the pulse spacing T while the pulse length ¢
determines the much shorter wavelength of the puise radiation.

If the generator is not an impedance match, then the charges will continue
to bounce back and forth on the dipole, resuiting in a longer pulse train as.
suggested in {¢) for the case of a poor maich (some pulse energy is absorbed in
the generator but more is reflected). The first 5 pulses broadside (7 at 30° from
broadside) of an indefinitely long {graduatly damping) pulse train are indicated.

It is evident from Fig 2-24 that radiation occurs from the points where
charge is accelerated, ie., at the center or féed point and at the ends of the dipole
but nat along the dipole itself.*

' G. Franceschetti and C. H. Papas, “ Pulsed Antennas,” Sensor and Simulation Note 203, Cal. Tech.,
1973,
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2-31 ANTENNA FIELD ZONES. The fields around an antenna may be
divided into two principal regions, one near the antenna called the near field or |
Fresnel zone and one at a large distance called the far field or Fraunhofer zone.
Referring to Fig. 2-25, the beundary bct\Veen the two may be arbitrarily taken to '
be at a radius :

R="2" (m ()

where L = maximum dimension of the antenna, m
A = wavelength, m

In the far or Fraunhofer region, the measurable field components arc trans-
verse to the radiai direction from the antenna and all power flow is directed
radially outward. In the far ficld the shape of the field pattern is independent of §
the distance. In the near or Fresnel region, the longitudinal component of the §
electric field may be significant and power flow is not entirely radial. In the near |
field, the shape of the field pattern depends, in general, on the distance. 3

Enclosing the antenna in an imaginary boundary sphere as in Fig. 2-264, it |
is as though the region near the poles of the sphere acts as a reflector. On the ]
other hand, the waves expanding perpendicular to the dipole in the equatorial
region of the sphere result in power leakage through the sphere as if partially }
transparent in this region. '.

This results in reciprocating (osciltating) energy flow near the antenna ]
accompanied by outward flow in the equatorial region. The outflow accounts for §
the power radiated from the antenna, while the reciprocating energy represents }
reactive power that is trapped near the antenna like in a resonator. This over- |
simplified discussion accounts in a qualitative way for the field pattern of the 1/2 §

Tao
infinity

Boundary sphere
of antenna region

far fieid
or
Fraunhafer

region

Near field
ar
Fresnel region

Antenna
region

Fresnsl-Frauntiofer
boundary sphere

Figore 2-25 Amtenina region, Fresnel region and Fraunhofer region.
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Vigure 2-26  Energy flow near a dipole antenna i« and radiation field pattern (6). The radius vector r
1: proportional to the feld radiated in that direction.

dipcle antenna as shown in Fig. 2-26b. The energy picture is discussed in more
detail in Sec. 5-2 and displayed in Fig. 5-7.

For a //2 dipole antenna, the energy is stored at one instant of time in the
electric field, mainly near the ends of the antenna or maximum charge regions,
while a {-period later the energy is stored in the magnetic field mainly near the
center of the antenna or maximum current region.

Note that although the term power flow is sometimes used, it is actually
eneryy which flows, power being the time rate of energy flow, A similar loose
usage ocgurs when we say we pay a power bill, when, in fact, we are actually
paying for electric energy.

2-32 SHAPE-IMPEDANCE CONSIDERATIONS. It is possible in
many cases to deduce the qualitative behavior of an antenna from its shape. This
may be illustrated with the aid of Fig, 2-27. Starting with the opened-out two-
conductor transmission line of Fig. 2-27a, we find that, if extended far enough, a
nearly constant impedance will be provided at the input (left) end for d « i
and D = 4.
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Maximum

radiation
(b}

{c)

o)

¢

(e}

as in {e) results in the spiral antenna,

In Fig. 2-275, the curved conductors are straightened into regular cones and L
in Fig. 2-27¢ the cones are aligned colinearly forming a biconical antenna, In ]
Fig. 2-27d the cones degenerate into straight wires. In going from Fig, 2.27a to d,
the bandwidth of relatively constant impedance tends to decrease. Another differ- |
ence is that the antennas of Fig 2-27a and b are unidirectional with beams 1o the §
right, while the antennas of Fig. 2-27¢ and d are omnidirectional in the horizon- |

tal plane (perpendicular to the wire or cone axes).

A different modification is shown in Fig. 2-27e. Here the two conductors I:
are curved more sharply and in opposite directions, resulting in a spiral antenna }
with maximum radiation broadside (perpendicular to the page) and with polariz- §

Figure 2-27 Evolution of a thin cylindrical antenna (4) .:
from an opened-out twin line {a). Curving the conductors 3
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line
Maximum Maximurm
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(c}

-~— —
N[ Coaxial (&) Figore 2-28 Evolution of stub {monopole)
| line antenna (e) from volcano-smoke antenna (a).

ation which rotates clockwise. This antenna, like the one in Fig. 2-27a, exhibits
very broadband characteristics {see Chap. 15).

The dipole antennas of Fig. 2-27 are balanced, t.e., they are fed by two-
conductor (balanced) transmission lines. Figure 2.28 illustrates a similar evolu-
tion of monopole antennas, ie., antennas fed from coaxial (unbalanced)
transmission lines.

By gradually tapering the inner and outer conductors of a coaxial transmis-
sion line, a very wide band antenna with an appearance reminiscent of a volcanic
crater and pufl of smoke is obtained, as suggested in the cutaway view of
Fig. 2-28a.

In Fig. 2-28b the volcano form is modified inte a double dish and in
Fig. 2-28¢ into two wide-angle cones. All of these antennas are omnidirectional in
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a plane perpendicular to their axes and all have a wide bandwidth. For cxample, :'
an actual biconical antenna, as in Fig. 2-28¢, with a full cone angle of 120° has an §

omnidirectional pattern and nearly constant 50-Q input impedance (power reflec-

tion less than 1 percent or VSWR < 1.2) over a 6 to | bandwidth with cone

diameter D = J at the lowest frequency.

Increasing the lower cone angle to 180° or into a flat ground plane while _'
reducing the upper cone angle results in the antenna of Fig. 2-284d. Collapsing the

upper cone into a thin stub we arrive at the extreme modification of Fig. 2-28¢. If

the antenna of Fig. 2-28a is regarded as the most basic form, the stub type of |

Fig. 2-28¢ is the most degenerate form, with a relatively narrow bandwidth,

As we depart further from the basic type, the discontinuity in the transmis- !

sion line becomes more abrupt at what eventually becomes the Junction of the

ground plane and the coaxial line. This discontinuity results in some energy being §
reflected back into the line. The reflection at the end of the antenna also increases §

for thinner antennas. At some frequency the two reflections may compensate, but
the bandwidth of compensation is narrow.

Antennas with large and abrupt discontinuities have large reflections and |
act as reflectionless transducers only over narrow frequency bands where the
reflections cancel. Antennas with discontinuities that are small and gradual have

small reflections and are, in general, refatively reflectioniess transducers over wide
frequency bands.

2-33 ANTENNAS AND TRANSMISSION LINES COMPARED. A |
uniform transmission line has a constant characteristic impedance determined by ]
the geometry of its cross section. Thus, the space between the conductors of the
coaxial line of Fig 2-29a can be mapped into 5% curvilinear squares with each
square having the characteristic resistance of space (=376.7 = 377 ).2 Therefore, |

this line has a characteristic resistance of 2

377

Zy="=685Q (1) §

T 55

If the line is cut and terminated in a load of 68.5 Q there would be, ideally,
no reflection (line matched). Put another way, if the line is cut and terminated in 3

a load of 5 resistors of 377 £}, one for each full square, and two 377 Q resistors in

' D. A. McNamara, D. E. Baker and L. Botha, “Some Design Considerations for Biconical
Antennas,” IEEE Ants. Prop. Int. Symp. Digest, 173, 1984.

* 1. D. Kravs, Electromagnetics, 3rd ed., McGraw-Hill, 1984, sec. 3-19.
3 The analytical {boundary-value} solution (medium air or vacuum} is

Z, =138 log E{m =6850Q
a

where b = wnner diameter of the outer conductor = 62.7 mm
a = ouater diameter of the inner conductor = 200 mm
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‘ XY
—_— Curvilinear
=

(5}

Figure 2-29 (Coaxial transmission line with field map (a),
ard terminated with an array of 377 resistors, one for each
curvilinear square (b} The total resistance of the array is
68.5 Q)

series for the § square, as in Fig. 2-29b, the line would be matched. A sheet of
space cloth (resistance 377 € per square) connected across the end of the line
would also behave as a matched load,

Now consider an infinite biconical antenna, as in Fig. 2-30a. With a simple
graphical field map drawn on a spherical surface, as in Fig. 2-30b, the character-
istic impedance of the biconical antenna can be obtained and also shown to be a
constant, i.e., independent of the distance from the terminals.

Let spherical space be divided inte 15° sectors in azimuth ($). Now con-
sidering a half-cone angle # = 30°, the map will require about 5 squares in series
from equator to cone and 24 squares in parallel. The map below the equator {not
shown) is a mirror image of the one above. Thus, the characteristic resistance of
this infinite biconical antenna is

N 2x5
=1 =—377= Q 2
Zs N,,377 o 3 157 (2)

where N, = number of squares in series (from cone to cone)
N, = number of squares in parallel

Schelkunoff’s formula (8-2-20) gives a characteristic resistance of 158.0 Q2 for
a half-cone angle of 30° _

From spherical geometry it follows that the characteristic impedance of an
infinite biconical antenna is a (radiation) resistance of constant value since the
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Figure 2-3  Infinite biconical antenma of half-cone angle 30° (a} with field cells (squares) (b).

ratio of the curvilinear squares in series to the number in parallel is constant, th
solid angle subtended by each square being independent of radius.

- Figure 2-31 illustrates some of the similarities and differences of antennal§
and transmission lines. In Fig. 2-31a an infinite biconical antenna with 8,, = 30
and characteristic resistance 160 Q is compared with an infinite uniform two-
conductor transmission line (characteristic resistance 300 Q). Waves traveling ousj
on both are entirely of the Transverse ElectroMagnetic {TEM) type and thd
VYS8WR = 1 for both.

In Fig. 2-3tb both antenna and line have load resistors equal to their char-{
acteristic resistance connected as shown.' Beyond the load resistors thej
VSWR = 1, but between the feed points and the loads the VSWR = 2,

In Fig. 2-31c¢ the cones and the line are truncated at the load. On the line
the VSWR =1 (line matched) but the biconical antenna is not matche
{(VSWR # 1 on the cones). If d < 1 there are no significant waves ({radiation}
negligible) beyond the load at the end of the transmission line, but the biconical
antenna i$ an opened-out radiating system, and higher-order mode waves exist}
beyond the load in the outer region.

' Instead of connecting a single 160-02 resistance between the cones as in Fig. 2-31b, a grid of distrib-4
uted resistors would provide a better arrangement. For cxample, a 10 x 24 grid of 240 resistors coubd
be cmployed, one for each curvilinear square of Fig. 2-306 with the resistor for each square equal 0]
(377 02 for a tordk resistance of 157 g The spherical surface could also be covered with a continuous§

sheef of space cloth {377 Q per square).
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Figure 2-31 Biconical antenna and transmission line compared for several conditions.

In Fig. 2-314d the load resistors are removed, resulting in an infinite VSWR
on the transmission line but a finite YSWR on the cones of the antenna, l?ecause
the radiation field of the antenna acts like an equivalent load Z,. This load
impedance transforms to an input {or terminal} impedance :

Z, +jZ, tan BI

3}
Zu +JZL tan .BI

Zi = Zo (Q}

a3 though the cones wete a transmission line of length [, For the truncatt_:d cones
there is reflection at the ends of the cones but no reflection of waves radiating in
the equatorial plane.



68 2 BASIC ANTENNA CONCEPTS

In (3), Z, = input or terminal impedance, £}
Z, = characteristic impedance of antenna = R,,
Z; = load impedance, Q
B =2n/i rad m™!?
{ = line length, m

For large cone angles (9 > 10°), the terminal impedance approaches the !
characteristic resistance of the antenna resulting in small VSWRs versus fre-
quency on the cones, For small cone angles (8 < 1°), the terminal impedance
departs significantly from the characteristic resistance resulting in large VSWRs]
versus frequency. For intermediate cone angles the situation is between these§
extremes. This is discussed in more detail in Sec. 8-4. '

Referring to Fig, 2-32, the space around an antenna can be divided into two§
regions: one next to the antenna, the *antenna region,” and one outside, the
“outer region.” The boundary between the two regions is a sphere whose center
is at the middle of the antenna and whose surface passes across the ends of the
antenna. {See also Fig. 2-26a.) The relation of this *boundary sphere” to a sym-j
metrical, biconical antenna is shown in Fig. 2-32. '

The wave caused by a very brief voltage pulse applied to the terminalsj
travels outward with the electric field, or E lines, forming concentric circles as|
shown in Fig. 2-32. The magnetic field, or H lines, are normal to the E lines and]
are concentric with the axis of the cones. The field has no radial component. It is]
strictly transverse (TEM). [t is said that these fields belong to the principal, or
zero-order, mode. ]

After a time t = L/c, where L equals the length of one cone and ¢ equals the]
velocity of light, the pulse field reaches the boundary sphere. At the end of the]

Polar axis
ar
axis of cones

Vs \\ Outer
/ N reqion
7 Antenna A\
/ N
{ region \
oo, R
: l !
\ 4
\ /
\E lines /
N /k Boundary
sphere

antenna

Figwre 2-32 Biconical antenna
with boundary sphere. 4
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E lines

Figure 2-31 Field configuration near dipole antenna.

cones there is an abrupt discontinuity, while at the equator there is none. Hence,
there is a large reflection at the end of the cones, and little energy is radiated in
this direction. On the other hand, at the equator the energy continues into the
outer region, and radiation is a maximumi in this direction.

The E lines of principal-mode fields must end on conductors and, hence,
cannot exist in free space. The waves which can exist and propagate in free space
are higher mode forms in which the E lines form ctosed loops. The principal-
mode wave is called a zero-order wave, and higher-order waves are of order
and greater. The configuration of the £ lines of a first-order wave in the outer
region is illustrated in Fig, 2-33. This wave has been radiated from a short dipole
antenna. The wave started on the antenna as a principal-mode wave, has passed
through the boundary sphere and has been transformed.' The field has a radial
component which is largest near the polar axis. At the equatorial plane the radial
component is zero and the E lines at this plane travel through the boundary
sphere without change. Since the radial components of the field attenuate more
rapidly than the transverse components, the radial field becomes negligible in
comparison with the transverse field at a large distance from the antenna.
Although the field at a large distance from the antenna is of a higher-order type,

! Some first-order mode is also present inside the antenna boundary sphere as a reflected wave. This
and higher-order modes may cxist both inside and ide of the boundary sphere in such a way that
there is continuity of the fields at the boundary sphere.
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the measurable components are only of the transverse typc; To suggest the fact §
that the radial field components are weak and become negligible at large dis- {

‘tances, the E lines in the polar region in Fig, 2-33 are dashed.

2-34 WAVE POLARIZATION. An important property of an electromag- |
netic wave is its polarization, a quantity describing the orientation of the electric

field E.!

Consider a plane wave traveuug out of the page (positive z direction), as in
Fig. 2-34a, with the electric field at all times in the y direction. This wave is said
to be lirearly polarized (in the y direction). As a function of time and position the §
clectric field of a linearly polarized wave (as in Fig. 2-34a) traveling in the posi- |

tive z direction (out of the page) is given by

E, = E, sin (et — ) M |

In general, the electric field of a wave traveling in the z direction may have |

both a y component and an x component, as suggested in Fig. 2-34b. In this

more general situation the wave is said to be elfiptically polarized. At a fixed §
value of z the electric vector E rotates as a function of time, the tip of the vector §
describing an ellipse called the polarization ellipse. The ratio of the major to |
minor axes of the polarization ellipse is called the axial ratio (AR). Thus, for the
wave in Fig. 2-34b, AR = E,/E,. Two extreme cases of elliptical polarization cor- J
respond to circular polarization, as in Fig. 2-34¢, and linear polarization, as in 4
Fig. 2-34a. For circular polarization E; = E, and AR =1, while for linear j

polarization E, = 0 and AR = w0,

In the most general case of elliptical polarization the polarization ellipse §
may have any orientation, as suggested in Fig. 2-35. This elliptically polarized j
wave may be expressed in terms of two linearly polarized components, one in the §
x direction and one in the p direction. Thus, if the wave is travelling in the }
positive z direction (out of the page), the electric field components in the x and y §

directions are

E, = E, sin {0t — f2) 2)
E, = E, sin (wt — fz + 8) (3} §

where E, = amplitude of wave linearly polariicd in x direction
E, = amplitude of wave linearly polarized in y direction
& = time-phase angle by which E, leads E,

Combining (2) and (3) gives the instantaneous total vector field E:

E = %E, sin (wt — f2) + YE, sin {wt — Bz + &) (4)

! Thus, a linearly polarized wave with E vertical is called a verl‘mlf)' polarized wave, the accompany- §

ing magnetic field H being horizontal.
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Figure 2-3 Linear, elliptical
and circular polarization . for
(a} th) i) wave propagation out of page.

Atz=0,FE, = E,sinwmt and E, = E, sin (wt + d). Expanding E, yields
E, = E, (sin wt cos & + cos wf sin J) (5

From the relation for £, we have sin wt = E/E, and cos wt = /1 ~ (E/E,}*.
Introducing these in (5} eliminates wt, and on rearranging we obtain

E? 2E_E cosd E?

F - —_—I—E °E E% =sin? & (6)
or aE? — bE, E, + cE} = | )
where = 1 __2cos3 _ 1

“Elsin’ o “EE,sm’é O Elsin’d

Eguation (7) describes a (polarization) ellipse, as in Fig. 2-35. The line segment
0A is the semimajor axis and the line segment OB is the semiminor axis. The tilt
angle of the ellipse is 1. The axial ratio is

AR=—2 (I<AR< ) ' (8)

For E, = 0, the wave is lincarly polarized in the y direction. For E; = 0, the
wave is linearly polarized in the x direction. If § = 0 and E, = E,, the wave is
also linearly polarized but in a plane at an angle of 45° with respect to the x axis
(t = 45°).

For E, =E, and & = +90°, the wave is circularly polarized. When
& = +90°, the wave is left-circularly polarized, and when 6 = —90°, the wave is
right-circularly polarized. For the case 8 = +90° and for z = 0 and t = 0 we have
from (2) and (3) that E = yE 2, 85 in Fig. 2-36a. One-quarter cycle later (wf = 90°)
E = XE,, as in Fig. 2-36b. Thus, at a fixed position (z = 0) the electric field vector
rotates clockwise (viewing the wave approaching). According to the [EEE
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Minor axis

" Potarization
ellipse

Figure 2-35 Polarization ellipse at 1ilt angle t showing instantaneous components £, and £, and
amplitudes (or peak values) £, and E,.

definition, this corresponds to left-circular polarization.! The opposite Totation
direction (6 = —90°) corresponds to right-circular polarization. Polarization
ellipses, as a function of the ratio E,/E, and phase angle & (wave approaching),
are shown in Fig. 2-37. In special cases, the ellipses become straight lines (linear
polarization) or circles (circular polarization).

If the wave is viewed receding (from negative z axis in Fig. 2-36), the electric
vector appears to rotate in the opposite direction. Hence, clockwise rotation of E
with the wave approaching is the same as counterclockwise rotation with the
wave receding. Thus, unless the wave direction is specified, there is a possibility of
ambiguity as to whether the wave is left- or right-handed. This can be avoided by
defining the polarization with the aid of helical antennas (see Chap. 7). Thus, a
right-handed monofilar axial-mode helical antenna radiates {or receives) right-
circular (IEEE) polarization.? A right-handed helix, like a right-handed screw, is
~ right-handed regardless of the position from which it is viewed. There is no possi-
bility here of ambiguity.

The concept of polarization extends to antennas. Thus, an antenna which
radiates a linearly polarized wave can be described as a linearly polarized

! This IEEE definition is opposite to the classical optics definition.

2 A lefi-handed monofilar axial-mode helical antenna radiates (or receives) leftcircular (IEEE)
polarization.
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Wave approaching

wi=0
E
Figure 2-3 Instantaneous orientation of
S P electric ficld vector E at two instants of time
* for a left-circularly polarized wave which is
) approaching {out of page).

antenna, as, for example, a dipole antenna. Likewise, an antenna which radiates a
circularly polarized wave can be called a circularly polarized antenna, as, for
example, a monofilar axial-tode helicat antenna (see Chap. 7).

2-35 WAVE POLARIZATION AND THE POYNTING VECTOR.
In complex notation the Poynting vector is

S = iE x H* (1)
The average Poynting vector is the real part of (1), or

S,,=Re S =4Re E x H* 2

o
0 § X
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Figure 2.37 Polarization ellipses as a function of the ratio E,/E, zra phase angle § with wave
apptoaching. Clockwise rotation of the resultant E corresponds to lefi-handed polarization (IEEE
definition} while counterclockwise corresponds to right-handed polarization.
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Referring to Fig. 2-35, let the clliptically polarized wave have x and y com-
ponents with a phase difference J as given by

E, = E gt (3)
E, = E, gl p=+4 (4)

At z = 0 the total electric field (vector) is then
E = RE, + YE, = RE & + yE, ef®*? (5)

where X = unit vector in x direction
¥ = unit vector in y direction

Note that E has two components each involving both a space vector and a time-
phase factor (phasor, with ¢ explicit).
The H-field component associated with E, is

H, = H et 9-0 (6)

where £ is the phase lag of H, with respect to E, . The H-field component associ-
ated with E_ is

Hx = _}'_I2 e}(ml‘-ﬁx‘}a—{] (?}

The total H ficld (vector) at z = 0 for a wave traveling in the positive z direction
is then

H:iH — RH, = yH, "™~ 9 . gH, gl 40 (8)

The complex conjugate of H is equal to (8) except for the 51gn of the exponents;
that is,

Ht=j‘,Hleﬂtm—{]_gﬂze-}(mHJ-{) )
Substituting (5) and (9) in (2) gives the average Poynting vector at z =0 as
S.. = Re [(% x YE H? — {y x R)E, H*]

=4z Re (E.H? + E, HY) (10} :{

where 2 is the unit vector in the z direction (direction of propagation of the wave). '!'

It follows that the average power of the wave per unit area is
S,, = $HE, H, Re ¢ + E, H, Re &)

=ME,H, +E,H))eos ¢ (Wm™ %) (11)

It is to be noted that S, is independent of 8.
In a lossless medium, & == 0 {electric and magnetic fields in the time phase)
“and E,/H, = E;/H, = Z, {where Z,, the intrinsic impedance of the medium, is
real), and (11) reduces to

S =4HEH, + E; H})

~ YUY + HDZo = 4iH?Z, (W m™?) a2 "3
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where H = /H? + H3 is the amplitude of the total H field. We can also write
_EP4EI | E? .
S“=%z—‘?’=%z~z~o (Wm™2 (13)
where E = . /E? + E7 is the amplitude of the total E field.

Example. An elliptically polarized wave travelling in the positive z direction in air
has x and y components

E,_ = 3 sin (ot — Bz} (Vm}
E, = 6sin (ot — fz+ 75 (Vm~?)

Find the average power per unit area conveyed by the wave.

Solution. The average power per unit area is equal to the average Poynting vector,
which from {13) has a magnitude
1E* 1EI+E}
“T2Z, 2 Z,

From the stated conditions, the amplitude E, = 3 Vin™' and the amplitude £, = ¢
¥ m™!, Also, for air, Z, = 376.7 {1 Hence, ’

13246 1 45
2 e A B0mWm 2 p
“T373767. 23167 o m

|
2-36  WAVE POLARIZATION AND THE POINCARE SPHERE. In
the Poincaré sphere! representation of wave polatization, the polarization state is
desciibed by a point on a sphere where the longitude and latitude of the point
are related to parameters of the polarization ellipse (see Fig. 2-38) as follows:

Longitude = 27
Latitude = 2¢ (1)
where t = tilt angle, 0° < 7 < 180°
=cot™! (FAR), 45" << +45

The axial ratio (AR} and angle ¢ are negative for right-handed and positive for
left-handed (IEEE) polarization.

The polarization state described by a point on a sphere can also be
expressed in terms of the angle subtended by the great circle drawn from a

1H Poincaré, Theorie Mathematigue de la Luminiére, G. Carré, Paris, 1892,
G. A. Deschamps, “ Geometrical Representation of the Polarization of a Plane Electromagnetic
Wave,” Proc. IRE, 38, 540, May 1951.
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Polarization state
M ie,rhar Piy, 81

Figare 2.3 Poincaré sphere showing
relation of angles e, 7, y and 4.

reference point on the equator and the angle between the great circle and the
equator (see Fig. 2-38) as follows:

Great-circle angle = 2y

Equator-to-great-circle angle = & @

where y = tan ! (E/E)), 0° < y < 90°
& = phase difference between E,and E,, —180° <4 < + 180°

The geometric relation of 7, ¢ and y-to the polarization ellipse is illustrated
in Fig. 2-3%. The spherical trigonometric interrelations of ¢, & y and J§ are as
follows:

cos 2y =cos 26 cos 2t

fan 2t = tan 2y cos &
sin 2¢ = sin 2y sin &

Knowing ¢ and 1, one can determine y and & or vice versa, It is convenient to
describe the polarization state by either of the two sets of angles (g, 1) or {y, 8)
which describe a point on the Poincaré sphere (Fig. 2-38). Let the polarization
state as a function of £ and © be designated by Mg, 1) or simply M and the
polarization state as a function of y and & be designated by P(y, &) or simply P, as
in Fig. 2-38. Two sp=cial cases are of interest.

Case 1. For & =0 or § = +180°, E, and E, are exactly in phase or out of phase, so
that any point on the equator represents a state of lingar polarization. At the origin
(e = 7 = 0) the polarization is linear and in the x direction (t = 0), as suggested in
Fig. 2-40a. On the equator 90° to the right, the polarization is linear with a tilt angle
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\

3

Tilt angle
y P /

| Polarization
ellipse

Figore 2-39  Polarization ellipse showing relation of angles ¢, y and .

T = 45°, while 180° from the origin the polarization is linear and in the y direction
(r = 90°). See Fig. 2-40a and b. One octant of the Poincaré sphere is shown in
Fig. 2-40a, the full sphere being shown in Fig. 2-40b in rectangular projection.

Case 2. Ford = £90° and E, = E, (2y = 90" and 2e = +90°) £, and E, have equal
amplitudes but are in phase quadrature, which is the condition for circular polariza-
tion. Thus, the poles represent a state of circular polarization, the upper pole rep-
resenting left-circular polarization and the lower pole right-circular (JEEE)
polatization, as suggested in Fig. 2-40a and b.

Cases 1 and 2 represent limiting conditions. In the general case, any point
on the upper hemisphere describes a left-elliptically polarized wave ranging from
pure left circular at the pole to linear at the equator. Likewise, any point on the
lower hemisphere describes a right-elliprically polarized wave ranging from pure
right circular at the pole to linear at the equator. Several clliptical states of
polarization are shown by cllipses with appropriate tilt angles t and axial ratios
AR at points on the Poincaré sphere in Fig. 2-40g and b,

As an application of the Poincaré sphere representation, it may be shown
that the voltage response ¥ of an antenna to a wave of arbitrary polarization is
given by’

V =k cos M;J' (9

' G. Sinclair, “ The Transmission and Reception of Elliptically Polarized Waves,” Proc. IRE, 38, 151,
1950,
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Left circular polarization, ¢ =457
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Figure 2-40 (a) One octant of Poincaré sphere with polarization states. [ Reclangular projection of
Poincaré sphere showiag lull range of polarization states.

where MM, = angle subtended by great-circle line from polarization state M to
M, -
M = polarization state of wave
M = polarization state of antenna
k = constant

The polarization state of the antenna is defined as the polarization state of the
wave radiated by the antenna when it is transmitting. The factor k in {4) involves
the field strength of the wave and the size of the antenna. An important result to
note is that if MM, = 0°, the antenna is matched to the wave (polarization state
of wave same as for antenna) and the response is maximized. However, if
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MM, = 180°, the response is zero. This can occur, for example, if the wave is
linearly polarized in the y direction while the antenna is linearly polarized in the
x direction; or if the wave is left-circularly polarized while the antenna is right-
circularly polarized. More generally we may say that an antenna is blind to a wave
of opposite {or antipodal) polarization state.

A more complete discussion of polarization including unpolarized waves,
partial pelarization, Stokes parameters and the wave-to-antenna coupling factor is
given by Kraus.*

2.37 CROSS-FIELD. For elliptical and circular polarization, the electric
field vector E at a fixed point rotates with time in a plane perpendicular to the
direction of wave propagation. There are situations, however, where E rotates in
a plane parallel to the direction of wave propagation. This condition is called
cross-field? This situation can occur if there is a component of E in the direction
of propagation. This condition never exists in the case of a single plane wave in
free space since such a wave has no field component in the direction of propaga-
tion. However, in the near field of an antenna there are field components in both
the direction of propagation and normal to this direction so that cross-field is
present. This is the case, for example, in the near field of a dipole antenna with
field components E, and E, as suggested in Fig. 2-41a.

Wave
direction

Cross field
region E.

Conducting  E,
medium

(a) (b) )

Figure 2.41 Three situations in which cross-field is presént: (a} in the pear field of a dipole antenna
and {b) in the region exposed to radiation from (wo dipole antennas. At {c) cross-field is present near
the surface of a conducting medium along which a plane wave is traveling.

1 ). D. Kravs, Radio Astronomy, 2nd ed., Cygnus-Quasar, 1986, chap. 4; J. D Kraus, Electromag-
netics, 3rd ed., McGraw-Hill, 1984, sec. i1-5.

2 A Alford, J. D. Kraus and E. C. Barkofsky, Very High Frequency Technigues, McGraw-Hill, 1947,
chap. 9, p. 200
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Incident
plane
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Vel

Reflected
plane

Circular
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45°
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Figore 242  Circular cross-field above a perfectly conducting piane at a point where the incident and
reflected linearly polarized waves are in time-phase quadrature.

Cross-field may also be present where two waves of the same frequency and
traveling in different directions cross. Thus, in the region exposed to radiation
from two dipole antennas, as in Fig. 2-41b, there is cross-field. The region may be
in the far fields of the antennas. Both antennas are linearly polarized in the plane
of the page and both radiate at the same frequency (both connected to the same
generator). In general, the tip of the E vector describes a locus that is an ellipse in
a maneer similar to that in elliptical polarization except that E is confined to the
plane of the antennas (plane of the page).

Another situation in which cross-field is present is near the surface of a
conducting medium along which a plane wave is traveling (Fig. 2-41¢). Unless the
medium is perfectly conducting, the E field is tilted forward near the surface of
the medium so that E has components both normal to the surface (E,) and paral-
lel or tangential to the surface (E,). Since, in general, these components are not in
time-phase, elliptical cross-field is present.!

Figure 2-42 illustrates the presence of cross-field at a point P above a
perfect flat conductor with a linearly polarized plane wave incident at an angle of
45°. At a distance 0.177 wavelength above the conductor the reflected and inci-
dent waves cross at right angles and are in time-phase quadrature. This results in
circular cross-field at P as suggested in the figure.

With pure cross-field, the tip of E describes, in general, an ellipse (elliptical
cross-field) which in special cases may become a straight line {linear cross-field) or
a circle (circular cross-field). This may be demonstrated analytically in a manner
similar to that used in Sec. 2.34 for wave polarization.2

Finally, consider the situation at a point where two circularly polarized
waves cross at right angles as shown in Fig, 2-43. If the waves are of equal ampli-
tude and the same frequency, the loci of E at P are ellipses (with AR = \/5)
which project in the plane of the page as a line AA’ {ellipse seen edge-on) or as a

! 1. D. Kraus, Eiectromagnetics, 3rd ed., McGraw-Hill, 1984, p. 585.
% 1. D. Kraus, Electromagnetics, Ist ed., McGraw-Hill, 1953, i 385
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CP waves

o ) -

T Direction of

Circularly Loci of E at P are
polarized ellipses {AR =+/2) which
helical —_ project as line 447 or Figure 2-43 Two  orthogonal

circle Cin pl f . i
p'arg: deéer?d?r?; gn phase monofilar  axial-mode  helical

antennas praducing equat circu-
larly polarized fields resubt in
loci of E at P that are ellipses
which project as Hne A4’ or as
circle € in plane of page
depending on phase.

antennas

circle C (ellipse seen at a slant angle) depending on the time phase. These loci
represent neither pure cross-field nor pure polarization but a combination or
hybrid situation; however, provided the two waves are of the same frequency, the
locus of the tip of E always lies in a plane and, in general, describes an ellipse.

2-33 TABLE SUMMARIZING IMPORTANT RELATIONS OF
CHAPTER 2.

Wavelength-frequency i= ; {m)
Beam area n,= J‘J-_P,(B, #)d) (51 or deg?)
Beam area {approx.) >0ty (57 or deg?)
, ]
Beam efficiency £y = 0—" (dimensionless)
A
L Ui, ¢),... S8,
Directivity D= V. Dy =30 )y, {dimensionless)
UI\I Sﬂ\‘
N dx .
Directivity D=—  {dimensioniess)
nA
L 4nd, .
Directivity 0= 52 (dimensionless)
Directivity (approx.} p=_23% . 41000 i fess}
HHI‘ ¢HP GIO'IP ¢rﬂ'
L 41 000¢,, t
Directivity (better approx.} — M (dimensioniess)
. k' 8"? ¢HP

1 See (3-13-18).
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Gain G=kD  (dimensionless)
Effective aperturc and beam area AQ,=2 my
Scattering aperture {antenna matched) A=A, (m?ori?)
Scattering aperture (antenna A,=44, (mPor iy

short-circuited}
Scattering aperivre {antenna A, =0 (m? or i%)

open-circuited, small antenna)
Collecting aperture A=A, +A,+A, (miori?)

. Al
Aperture efficiency by {dimensionless)
Ld
Effective height powlop lm_ [RA
E * L ZO

. o Andye

Friis transmission formulza P=P ==X (W
r212
Cutrent-charge continuity relation =gt (Ams™)
o .uzqzirl
Radiation power W
po onZ ]
i
Near-field—far-field boundary R =7 {m)
. . El+ E2

Average power per unit area of S, =1z Et& (Wm™?

clliptically polarized wave in air Zo .

PROBLEMS'

-1

22

2-3

Directivity. Show that the directivity D of an antenna may be written

E(). Plmax E*O. Phnas 2
F]

T ﬂ G DE'0. ) 40
W Z

D=
4n

Directivity. Show that the directivity of an antenna may be expressed as

JI E{x, yydx dy J.J E*(x, y} dx dy
4 ) ja, ™

=
H E(x, y)E*(x, y) dx dy

D=

where E(x, y) is the aperture field distribution.

Effective aperture, What is the maximum effective aperture (approximately) for a
beam antenna having half-power widths of 30° and 35° in perpendicular planes
intersecting in the beam axis? Minor lobes are small and may be neglected.

' Answers to starred (*) problems are gwen in App. D.

*24

2-5

*1-6

2-7

*1.9
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Effective aperture. What is the maximum effective aperture of a microwave
antenna with a directivity of 9007

Received power. What is the maximum power received at a distance of 0.5 km over
a free-space 1-GHz circuit consisting of a transmitting antenna with a 25-dB gain
and a receiving antenna with a 20-dB gain? The gain is with respect to a lossless
isotropic source. The transmitting antenna input is 150 W.

Spacecraft link over 100 Mm. Two spacecraft are sépatated by 100 Mm. Each has
an antenna with D = 1000 operating at 2.5 GHz. If craft A's receiver requires
20 dB over 1 pW, what transmitter power is required on craft B to achieve this
signal level?

Spacecraft link over 3 Mm. Two spacectaft are separated by 3 Mm. Each has an
antenna with D = 200 operating at 2 GHz. If craft A’s receiver tequires 20 dB over
1 pW, what transmitter power is required on craft B to achieve this signal level?
Mars Jink. (4) Design a two-way radio link to operate aver earth-Mars distances
for data and picture transmission with a Mars probe at 2.5 GHz with a 5-MHz
bandwidth. A power of 107'* W Hz ™! is to be detivered to the earth receiver and
1077 W Hz™* to the Mars receiver. The Mars antenna must be no farger than
3 m in diameter. Specify effective aperture of Mars and carth antennas and trans-
mitter power {total over entire bandwidth) at each end. Take earth-Mars distance
as 6 light-minutes. (b) Repeat (a} for an earth-Jupiter link. Take the earth-Jupiter
distance as 40 light-minutes.

Moon link. A radio link from the moon to the earth has a moon-based 5i-long
right-handed monofilar axial-mode helical antenna and a 2-W transmitter oper-
ating at 1.5 GHz. What should the polarization state and effective aperture be for
the earth-based antenna in order to detiver {07'* W to the receiver? Take the
earth-moon distance as 1.27 light-seconds.

210 Crossed dipoles for CP and other states. Two /2 dipoles are crossed at 90°. 1f the

two dipoles are fed with equal currents, what is the polarization of the radiation
perpendicular to the plane of the dipoles il the curtents are {a) in phase, (b) phase
quadrature (30° difference in phase) and (c) phase octature (45° difference in phase)?

%2.11 Two LP waves. A wave traveling normally out of the page (toward the reader) has

two linearly polarized components
E,.=2cos ot
E, = 3 cos {wi + 9F)

(@) What is the axial ratio of the resultant wave?
() What is the tilt angle t of the major axis of the polarization ellipse?
(¢} Does E rotate clockwise or counterclockwise ?

212 Two EP waves. A wave traveling normally outward from the page {toward the

reader) is the resultant of two elliptically polarized waves, one with components of
E given by

E, =2 cos et

E, =6cos (cur +g)
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and the other with components given by

E =1 cos wt

E§=3cos(mr-f)
2

(g} What is the axial ratio of the resultant wave?
(b} Does E rotate clockwise or counterclockwise?

*2-13 Two LP components. An elliptically polarized plane wave traveling normally out of
the page (toward the reader) has linearly polarized components E,_ and E,. Given
that E, = E, = 1V m~ " and that E, leads E, by 72°,

{a) Calculate and sketch the polarization ellipse.
{b) What is the axial ratio?
{c) What is the angle r between the major axis and the x axig?

2-14 Two LP components. Answer the same guestions as in Prob. 2-13 for the case
where E, leads £, by 72° as before but E, =2 Vm ™ 'and E,= 1V m™".

*2-15 Two CP waves. Two circularly polarized waves intersect at the origin. One (y wave}
is traveling ia the positive y direction with E rotating clockwise as observed from a
point on the positive y axis. The other (x wave) is traveling in the positive x direc-
tion with E rotating clockwise as observed from a point on the positive x axis. At
the origin, E for the y wave is in the positive z direction at the same instant that E
for the x wave is in the negative z direction. What is the locus of the resultant E
vector at the origin? '

2-16 Tilt angle. Show that the tilt angle  can be expressed as

_y 2E\E; cos &

1
T= tan
7 EI-E}

2-17 Spaceship near moop. A spaceship at lunar distance from the earth transmits
2-GHz waves. If a power of 10 W is radiated isotropically, find {a) the average
Poynting vector at the earth, (b) the rms electric field E at the earth and (c} the time
it takes for the radio waves to travel from the spaceship to the earth. (Take the
earth-moon distance as 380 Mm.) () How many photons per unit area per second
fall on the earth from the spaceship transmitter?

*2-18 CP waves. A wave traveling normally out of the page is the resuitant of two circu-
larly polarized components E,,, = 5¢*' and E,;, = 27 #** 7 (V m™!), Find {a)
the axial ratio AR, (b) the tilt angle t and (c) the hand of rotation (left or right).

2-19 EP wave. A wave traveling normally out of the page (toward the reader) is the
resultant of two linearly polarized components E, =3 cos wt and E, =2 cos
{wt + 90°). For the resultant wave find (a) the axial ratio AR, (b} the tilt angle r and
{c) the hand of rotation (left or right).

*2-20 CP waves. Two circularly polarized waves traveling normally out of the page have
fields given by E,.;, = 2¢ ¥ and E, .4, = 3™V m™") (rms). For the resultant wave
find (a) AR, (b) the hand of rotation and (¢} the Poynting vector.

2-21 EP waves. A wave traveling normally out of the page is the resultant of two ellip-
tically polarized (EP) waves, one with components E, = 5 cos wt and E_ = 3 sin et
and another with components E, = 3¢*' and E, = 4" For the resultant wave,
find {a) AR, (b} T and (c) the hand of rotation.

rrOSLEMS 8%

*2-22 CP waves. A wave traveling normally out of the page is the resultant of two circu-
larly polarized components E, = 2&™ and E, = de~#'*457 £ar the resultant
wave, find (@) AR, (b) r and (c) the hand of rotation.

2-23 More power with CP. Show that the average Poynting vector of a circularly pol-
arized wave is twice that of a linearly polarized wave if the maximum electric field
E is the same for both waves. This means that a medium can handle twice as much
power before breakdown with circular polarization (CP} than with linear polariz-
ation {LP).

2-24 PV constant for CP. Show that the instantaneous Poynting vector (PV) of a plane
circularly polarized traveling wave is a constant,

*2-25 EP wave power. An elliptically polarized wave in a medium with constants o = 0,
#, =2, & = 5 has H-field components (normal to the direction of propagation and
normal to each ather) of amplitudes 3 and 4 A m™!. Find the average power con-
veyed through an area of 5§ m? normal to the direction of propagation, :

2-26 Circular-depolarization ratio. If the axial ratio of a wave is AR, show that the
circular-depotarization ratio of the wave is given by

_AR-1
T AR+ 1

Thus, for pure circular polarization AR = 1 and R = 0 {no depolarization) but fot
linear polarization AR = oc and R = 1.

2-27 Superiuminal phase velocity near dipole. (1) By measuring the distances between P,
F" and P* determine the amount of superluminal (v > ¢) phase velocity of the waves

near the dipole in Fig. 2-23. (b) Under what other conditions are superluminal
velocities encountered?
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31 INTRODUCTION. POINT SOURCE DEFINED. Let us con-
sider an antenna contained within a volume of radius b as in Fig. 3-1a. Confining
our attention only to the far field of the antenna, we may make observations of
the fields along an observation circle of large radius R. At this distance the mea-
surable fields are entirely transverse, and the power flow, or Poynting vector, is
entirely radial. It is convenient in many analyses to assume that the fields of the
antenna are everywhere of this type. In fact, we may assume, by extrapolating
inward along the radii of the circle, that the waves originate at a fictitious
volumeless emitter, or point source, at the center O of the observation circle. The
actual field variation near the antenna, or “near field,” 15 ignored, and we
describe the source of the waves only in terms of the “far field” it produces.
Provided that our observations are made at a sufficient distance, any antenna,
regardless of its size or complexity, can be represented in this way by a single
point source.

Instead of making field measurements around thé observation circle with
the antenna fixed, the equivalent effect may be obtained by making the measure-
ments at a fixed point ¢ on the circle and rotating the antenna around the center
O This is usually the more convenient procedure if the antenna is small.

In Fig. 3-1a the center O of the antenna coincides with the center of the
observation circle. If the center of the antenna is displaced from O, even to the
extent that O lies outside the antenna as in Fig. 3-1b, the distance d between the
two centers has a negligible effect on the field patterns at the observation circle

86
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Antenna

Observation
circle

2]
@

Figore 3-1 Antenna and observation circle.

provided R » 4, R » b, and R » 1. However, the phase patterns’ will generally
differ, depending on d. If 4 = 0, the phase shift around the observation circle is
usually a minimum, As 4 is increased, the observed phase shift becomes larger.

As discussed in Sec. 2-4, a complete description of the far field of a source
requires three patterns: two patterns of orthogonal field components as a func-
tion of angle [E4f, ¢) and E,f, ¢)] and one pattern of the phase difference of
these fields as a function of angle [5(8, ¢)]. For many purposes, however, such a
complete knowledge is not necessary. [t may suffice to specify only the variation

" with angle of the power density or Poynting vector magnitude (power per unit

area) from the antenna [S)0, ¢)]. In this case the vector mature of the field is
disregarded, and the radiation is treated as a scalar quantity. This is done in
Sec. 3-2. The vector nature of the field is recognized later in the discussion on the
magnitude of the field components in Sec. 3-16. Although the cases considered as
examples in this chapter are hypothetical, they could be approximated by actual
antennas.

32 POWER PATTERNS. let a transmitting antenna in free space be rep-
resented by a point-source radiator located at the origin of the coordinates in
Fig. 3-2 (see also Fig. 2-5). The radiated energy streams from the source in radial
lines. The time rate of energy flow per unit area is the Poynting vector, or power
density (watts per square meter). For a point source (or in the far field of any
antenna), the Poynting vector 8 has only a radial component S, with no com-
ponents in either the 8 or ¢ directions (S, = S, = 0). Thus; the magnitude of the
Poynting vector, or power density, is equal to the radial component (|S{ = S,).

! Phase variation around the observation circle.
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Polar
axis
§,{ = radial component of Poynting
vectar or power density, Wm 2,
at radius r)
r. 8, ¢l
Point sourced
at origin ¥
]
X Equatorial glane
{a)
r sin & dé
rdd

Elament of area ds at radius r
=r2 gin & db do

Area ds subtends a solid angle
=sin § of de¢

¥

Figare 3-2 Spherical coordinates for a point source of radiation in free space.

A source that radiates emergy uniformly in all directions is an isotrepic
source. For such a source the radial component §, of the Poynting vector is
independent of 8 and ¢. A graph of §, at a constant radius as a function of angle
is 2 Poynting vector, or power-density, pattern, but is usually called a power
pattern, The 3-dimensional power pattern for an isotropic source is a sphere. In 2
dimensions the pattern is a circle (a cross section through the sphere), as sug-
gested in Fig, 3-3.

§=0

p

Figure 3-3  Polar power pattern of isolropic source.
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§=0 8=0 6=0 §=0

U
5m . U,

{a) &) «) ()

Figure 34 Power patiern (a), relative power pattern (b), radiation-intensity pattern () and refative
radiation-intensity pattern {d) for the same directional or anisotropic source. Alt patterns have the
same shape. The relative power and radiation-intensity patterns {b and d) also have the same magni-
tude and, hence, are identical.

Although the isotropic source is convenient in theory, it is not a physically
realizable type. Even the simplest antennas have directional properties, i.c., they
radiate more energy in some directions than in others. In contrast to the isotropic
source, they might be called anisotropic sources. As an example, the power
pattern of such a source is shown in Fig. 3-4a where §,,, is the maximum value of
S,.

" If' S, is expressed in walts per square meter, the graph is an absolute power
pattern. On the other haand, if S, is expressed in terms of its value in some refer-.
ence direction, the graph is a relative power pattern. It is customary to take the
teference direction such that S, is 2 maximum. Thus, the pattern radius for rela-
tive power is 8/, where S, is the maximum value of §,. The maximum value
of the relative power pattern is unity, as shown in Fig. 3-4b. A pattern with a
maximum of unity is also called a normalized pattern.

33 A POWER THEOREM' AND ITS APPLICATION TO AN
ISOTROPIC SOURCE. If the Poynting vector is known at all points on a
sphere of radius r from a point source in a lossless medium, the total power

! This theorem is a special case of 2 more general relation for the complex power flow through any
closed surface as given by

P=§ﬁ(ExH’)'ls (1}
where P is the toial complex power flow and E and H* arc complex vectors representing the electric
and magnetic fields, H* being the complex conjugate of H. The average Poynting vector is

' 8=4Re(ExH") 2

Mow the power flow in the far field is entirely real; hence, taking the real part of (1) and substituting
(2), we obtain the spectat case of {3}
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radiated by the source is the integral over the surface of the sphere of the radial
component S, of the average Poynting vector. Thus,

P=ﬁs-ds=jtjgs,ds (3)

where P = power radiated, W
S, = radial component of average Poynting vector, W m ™ ?
ds = infinitesimal element of area of sphere (see Fig. 3-2b)
= r? sin 8 46 d¢, m?
For an isotropic source, 3, is independent of 8 and ¢ so

P=35, ﬁds =5 x4 (W) #
and § = __P_ W m~? 5
T dnr? (Wm™) _ (3)

Equation (5) indicates that the magnitude of the Poynting vector varies inversely
as the square of the distance from a point-source radiator. This is a statement of
the well-known faw for the variation of power per unit area as a function of the
distance. ' -

3-4 RADIATION INTENSITY. Multiplying the power density 5, by the
square of the radius r at which it is measured, we obtain the power per unit solid
- angle or radiation intensity U. Thus,

r!S, = U = radiation intensity (- 1

Whereas the power density S, is expressed in watts per square meter, the radi-
ation intensity U is expressed in watis per unit solid angle (watts per square
radian or steradian). The radiation intensity is independent of the radius. Dimen-
sionally, the radiation intensity is simply power since steradians are dimension-
less. Numericalily, U is equal to S, at nnit radius.

Substituting (1) into (3-3-3), the power theorem assumes the form

P=”Usineded¢=ﬂvdn W) @
where dQ) = sin 8 d8 d¢ = element of solid angle, sr

Thus, the power theorem may be restated as follows:

The total power radiated is given by the integral of the radiation intensity U
over g solid angle of 4n.

‘ As already mentioned in Sec. 2-6, power patterns can be expressed in terms
“of either the Poynting vector (power density) or the radiation intensity. A power

35 SOURCE WITH HEMISPHERIC POWER FATTERN 91

.pattern in terms of U is shown in Fig. 3-dc. The maximum value U, is in the

direction @ = 0. A relative U/, pattern has a maximum value of unity as shown

in Fig. 3-4d. Relative power-density and radiation-intensity patterns are identical.
Applying (2) to an isotropic source gives

P=dxly (W) 3

where U, = radiation intensity of isotropic source, W st~ .

35 SOURCE WITH HEMISPHERIC POWER PATTERN. As a
further example let us consider a source with a power pattern which is a hemi-
sphere: ie., the radiation intensity equals a constant U,, in the upper hemisphere
and is zero in the lower hemisphere, as illustrated by the 3-dimensional diagram
of Fig. 3-5a and its 2-dimensional cross section of Fig. 3-5b. Then, the total
power radiated is the radiation intensity integrated over a hemisphere, or

In f'mi2 ;
P=J]UdQ=J J. U, sin 8d8 d¢ = 2xU, (1)
o 0
Assuming that the total power P radiated by the hemispheric source is the

same as the total power radiated by an isotropic source taken as a reference, {n
and (3-4-3) can be equated, yielding

2aU,, = 4rl, 2
v, S
or —= = 2 = directivity (3
Uy

The ratio of U,, to U, in (3) equals the directivity of the hemispheric soutce.
The directivity of a source is equal to the ratip of its maximum radiation intensity
to its average radiation intensity. The directivity of a source may also be stated as

the ratio of its maximum radiatior intensity to the radiation intensity of an iso-

#ropic source radiating the same total power. By (3}, the directivity of _thc hemi-
sphieric source is 2; that is to say, the power per unit solid angle U, in one

o |= 0 Hanmizpheric
Isotropic
(CH (&} (c)

Figare 35 Hemispheric power patterns, {a) and (b), and comparison with isotropic pattern (c).
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hemisphere from the hemispheric source is twice the power per unit solid angle
U, from an isotropic source radiating the same total power. This we would
expect, since a power P radiated uniformly over one hemisphere will give twice
the power per unit solid angle as when radiated umiformly over both hemi-
spheres. The power patterns of a hemispheric source and an isotropic source are
compared in Fig. 3-5¢ for the same power radiated by both.

3-6 SOURCE WITH UNIDIRECTIONAL COSINE POWER
PATTERN. Let us consider next a source with a cosine radiation-intensity
pattern, that is,

U=U,cos 8 (H
where U/, = maximum radiation intensity

The radiation intensity U has a value only in the upper hemisphere (0 < & < n/2
and 0 < ¢ < 2r) and is zero in the lower hemisphere. The radiation intensity is a
maximum at § = 0. The pattern is shown in Fig. 3-6. The space pattern is a figure
of revolution of this circle around the polar axis.

To find the total power radiated by the cosine source, we apply (3-4-2) and
integrate only over the upper hemisphere. Thus

x "xj2
P=.[ j U,, cos 8 sin 0 d6 dgp = =U,, {2)
o Jo

If the power radiated by the unidirectional cosine source is the same as for an
isotropic source, then (2) and (3-4-3) may be set equal, yielding

U, =d4nl,

or Directivity = & =4 (3)
Us
Thus, the maximum radiation intensity U, of the unidirectional cosine
source (in the direction 8 = 0) is 4 times the radiation intensity U, from an iso-
tropic source radiating the same total power. The power paiterns for the two
sources are compared in Fig. 3-7 for the same total power radiated by each.

#=0
Polar
axis

Half-power
points

Figwre 3-6 Unidirectional cosinc power pattern.
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#=0

Polar

axis

13 Cosine

¥4

1
\‘ _/ Isotropic Figme 3-7 Power patterns of unidirectional cosine source com-
pared with isotropic source for same power radiated by both.

37 SOURCE WITH BIDIRECTIONAL COSINE POWER
PATTERN. Let us assume that the source has a cosine pattern as in the pre-
ceding example but that the radiation intensity has a value in both hemispheres,
instead of only in the upper one. The pattern is then as indicated by Fig, 3-8. It
foliows that P is twice its vatue for the unidirectional cosine power pattern, and
hence the directivity is 2 instead of 4,

38 'SOURCE WITH SINE (DOUGHNUT) POWER PATTERN,
Consider next a source having a radiation-intensity pattern given by

U=U,sin & (1)

T}?e pattern is shown in Fig. 3-9. The space pattern is a figure-of-revolution of
this pattern around the polar axis and has the form of a doughnut. Applying
(3-4-2), the total power radiated is

2x "x
P=uU, J J. sin? 0 40 d¢ = n*U,, )
a ]

Polar

=0
axis
=0
Polar
axis

Figore 3-8  Bidirectional cosine power pattern. Figure 3-9 Sine power pattern.
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If the power radiated by this source is the same as for an isotropic source taken
as reference, we have

ntl, = 4z, (3)

v, 4
and Directivity = 5— == 1.27 (4)

39 SOURCE WITH SINE-SQUARED (DOUGHNUT) POWER
PATTERN. Next consider a source with a sine-squared radiation-intensity or
power pattern. The radiation-intensity pattern is given by

U=1U,sin?# (0

The power pattern is shown in Fig. 3-10. This type of pattern is of considerable
interest because it is the pattern produced by a short dipole coincident with the
polar (8 = 0) axis in Fig. 3-10. Applying (3-4-2), the total power radiated is

Ix =
P=U, j J. sin® 8 4@ d¢p = $=U, 2)
] ]
If P is the same as for the isotropic source,
frU, = 4nU,
U 3
. . 3
and Directivity U, 2 5 (3}

310 SOURCE WITH UNIDIRECTIONAL COSINE-SQUARED

POWER PATTERN. Let us consider next the case of a source with a uni-

directional cosine-squared radiation-intensity pattern as given by

U=1U,cos? @ ]
with the radiation intensity having a value only in the upper hemisphere. The
pattern is shown in Fig. 3-11. The 3-dimensional or space pattern is a figure-of-

#=0

Figure 3-11 Unidirectional cosine-squared
Figure 3-10  Sine-squared power pattern power patiern.
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revolution of this pattern around the polar (8 = () axis and has the form of a
prolate spheroid {football shape). The total power radiated is i

P=U, j J cos® 8 sin 8 d6 d¢ = $rU )
0 0
If P is the same as radiated by an isotropic source,
iﬂ Um = 4ﬂUD
o U,
and Directivity = _LT =6 (&3]

1

Thus, the maximum power per unit solid angle (at & = 0) from the source with
the cosine-squared power pattern is six times the power per unit solid angle from
an isotropic source radiating the same power.

311 SOURCE WITH UNIDIRECTIONAL COSINE® POWER
PATTERN. A ‘more general case for a unidirectional radiation-intensity
pattern which is symmetrical around the polar {# = Q) axis is given by

U=U,cos" 8 (N

where n is any real number, In Fig. 3-12, relative radiation-intensity or power
patterns plotted to the same maximum value are shown for the cases where
n=0 4,1, 2, 3 and 4. The case for n = 0 is the same as the source with the
hemispheric power pattern discussed in Sec. 3-5, The cases forn =1 and n =2
were treated in Secs. 3-6 and 3-10. When n = 1, 3 and 4, the directivity is 3, 8 and
10, respectively.! These calculations are left to the reader as an exercise. A graph
of the directivity of a unidirectional source as a function of n is presented in
Fig. 3-13.

Figure 3-12  Unidirectional cos" 8 power patterns for various vatues of n.

' It may be shown that the directivity of sources with power patterns of the type given by (1) can be
reduced to the simple expression, directivity = 2(n + 1). The proof is left 10 the reader as an exercise.
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Directivity
b g O D DD
T

=)
-
)
w
rS
wn

6  Figore 3-13  Directivity versus n for unidirectional
" sources with ¢os” § power patierns.

The half-power beam widths and exact directivity [I = 2{r + 1] for cos" 8
patterns are listed in Table 3-1 for n values between 0 and 100. The directivity is
also given in dBi (dB over isotropic) for both exact and approximate values,
where the approximate value is based on the HPBW? from (2-9-4). The difference
between the exact and approximate values is tabuiated in the last column. The
approximation is within +0.2 dB of the exact valug for n between 4 and 10 A
further discussion of the (2-9-4) approximation is given following {17} of Sec. 3-13.

3-12 SOURCE WITH UNIDIRECTIONAL POWER PATTERN
THAT IS NOT SYMMETRICAL. All the patterns considered thus far
have been symmetrical around the polar axis; ie., the space pattern could be
constructed as a figure-of-revolution about the polar axis. Let us now consider a
more general case in which the pattern is unidirectional but is unsymmetrical
around its major axis, In discussing this type of pattern it will be convénient to
shift the direction of the major axis or direction of maximum radiation from the
polar (8 =0} axis to a direction in the equatorial plane as shown in Fig. 3-14
{8 =90° ¢ =90 The & =90" plane ceincides with the xy planc and the

Table 3-1 Half-power beam widths and directivity of
sources with unidirectional cos" @ power patterns.

HPBW, Exact  Apmrox.  Dilference,
n deg p DdB  DdB 4B
00 1800 2 30 L1 -9
05 1510 3 a8 24 —22
t 1200 a 60 46 14
2 90.0 6 73 71 -01
3 749 g 90 87 ~0.3
4 65.5 10 100 98 -02
5 59.0 12 108 108 . 00
6 540 14 115 115 00
8 470 18 124 127 0.1
10 42.2 22 134 136 02

20 300 42 162 166 0.4
50 190 102 204 206 0.5
£00 135 22 23] 235 04
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Figure }14 Unidirectional source radialing
maximum power in the direction 8 = 90°, ¢ = 90°
or along the y axis.

¢ = 90° plane with the yz plane. A rather general expression for the radiation
intensity with its maximum at & = 90° and ¢ = 90° is then given by

U=U,_sin" #sin” ¢ (1)

where n = any real number
m = any real number

and the radiation intensity U has a value only in the right-hand hemisphere
(Fig. 3-14) (0 £ P < n; 0 £ ¢p < 7). When m = n, {l) becomes the equation for a
symmetrical power pattern of the same form as considered in Sec. 3-11. When m
and n are not the same, (1) represents the general case in which the pattern has
different shapes in the # = 90° and ¢ = 90" planes. The total power radiated in
this general case is

P= erJ‘ Jsin"” § sin™ ¢ d6 d 2
0 1]

3-13 DIRECTIVITY. The concept of directivity, treated above in some
special cases and also introduced in Sec. 2-8, will now be reviewed and developed
in more detail.

In Sec. 3-5 directivity was given as the ratio of U, to U, where U, is the
maximum radiation intensity or watts per square radian from the source under
consideration and U/, is the radiation intensity from an isotropic source radiating
the same power {or U, is the average radiation intensily from the source under
consideration). Thus,

D= U, maximum radiation intensity ]
' U, average radiation intensity {)

where D = directivity

Multiplying numerator and denominator of (1) by 4=z gives

- 4nl, e T total power radiated @
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Let us now develop a more general expression for the directivity. Let the j

radiation-intensity pattern be expressed as

and its maximum value by

Un = Us S, D @ §

where U/, = a constant

For the special case where

then U, = U, and (3) can be written b
U=U,/f@ ¢ ©)]
The average radiation intensity is I'

[{U. 16, ¢) dn -

P
U = — =
° " 4n 4

where P = total power radiated
d(} = sin & d@ d¢ = element of solid angle

The directivity D is then given by
U Uy f(6, @uax _ 27S (8, Sl

Uy I U, fi& 9 d ([ 116, ¢) dQ2
T

Equation (8} can be reexpressed as

D=

po__m___4
i, ¢)do T Q,
£(6, Sax

where Q,, is defined as the beam area, or beam solid angle. It is given by

S B, Pluax
From (1) and (9), .
v, 4n 3
- =, (11) :i
and 4nU, = U,Q, (12)4
Since U, = P/4n,
P=U.Q, an

where P = total power radiated

U=U./6 ¢ o ]

S, $homs = 1 CF
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Figure 315 Unidirectional power patiern in cross section with
included angle (7 of the beam area. The space patierns are figures-
of-revolution arcund the y axis.

Therefore, the beam area Q1 is the solid angle through whick all the power
radiated would stream if the power per unit solid angle equaled the maximum value
U,, over the beam area.

zl,

[
square radians = 41253 52 square degrees (14)

A

Consider the unidirectional power pattern shown in Fig. 3-15. The pattern
is a figure-of-revolution around the y axis. The included_ anglfe @ of the corre-
sponding beam area is also shown. If the power per unit solid angle over the
beam arca equals the maximum value U, of the directional source, the power
through the beam area equals that radiated by the source.

From this it is only a step to a very simple approximate method of calcu-
lating the directivity for a single-lobed pattern, based on an estimate of the beam
area from the half-power beam widths of the patterns in two planes at right
angles. Thus, let 8, cqual the half-power beam widt?ﬁ in the # plane 31:ld ¢yp the
half-powert peam width in the ¢ plane. Then, neglecting the effect of minor lobes,

we have approximately

Q, =~ Byp dur (15
and, as already presented in (2-9-4),
4n 41000

~

BHI’ ¢HF - e?ll’ ¢;IP

4
D=—=
A

Q

E]

(16)'

where 8, = half-power beam width in 8 plane, rad
$yup = half-power beam width in ¢ plane, rad
g, = half-power beam width in 6 plane, deg
dip = half-power beam width in ¢ plane, deg

 4n steradians = 4x{180/x)? square degrees = 41253 square degress, ic, there are 411253 square
degrees in & sphere. For the approimate relation {16) the value is rounded off 1o 41 000.
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For a pencil beam where 0,3, = dyp,

2 4—:[ o ilgﬂ? (th
BHP (GHP}

Equation {16} has been used very widely since appearing in the first edition,
in most cases appropriately but sometimes inappropriately. Although accompa-
nied by a three-paragraph footnote cautioning about its limitations, some
authors have ignored these guidelines and argued that the numerator should be
26358, 32750 or 34250 instead of 41 253 square degrees, without realizing that
the four cases involve four different classes of antennas.

My original rationale was that formulas tike (16) and (17) are useful in the
context that il we know that an antenna has a 1° pencil beam and small minor
lobes, its gain is approximately 41 000 or 46 (B, give or take a decibel or two, but
not that the result is accurate to 5 of a decibel or better.

Some of the limitations of (16) are that: {1) the cffect of minor lobes is
neglected, (2) the angle product (8, ¢byp) may not be rigorously related to the
true solid angle of the main beam and (3) the angle product relation to the true
solid angle varies according to the type of antenna pattern involved.

it is pointed out in the first edition footnote that by introducing a correc-
tion factor the result can be improved. It is further pointed out that the value of
this factor depends on the antenna type-and may be relatively constant for a
certain class of antennas.

Instead of introducing one correction factor, let us introduce two,! one
involving the beam efficiency to correct for the minor lobes and the other to
correct for pattern shape so that

41 OOOSM

kO dur

b (18)

Q .

where &, = —ﬁﬁ = beam efficiency = 0.75 + 0.15 for most large antennas
A

k, = pattern factor = 1.0 for a uniform field distribution across the

antenna aperture

For “ball-park * values {16) may suffice but (18) should be used for closer
approximations. The effect of pattern shape is well llustrated by the comparison
summarized in Table 3-1, Sec. 3-11,

For a Gaussian distribution {and beam)?

L H000 x 0.88

D - & a { 19}
e Pip

' 1. D. Kraus, Radic Asironomy, 1st ed., McGraw-Hill, 1966, p. 158; 2nd ed., Cygnus-Quasar, 1986,
p. 6-6.
* See Prob. 11-20,
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3-14 SOURCE WITH PATTERN OF ARBITRARY SHAPE.

Example. Consider a pattern of arbitrary shape as shown in Fig. 3-16 in both polar
and rectangular coordinates. The pattern has a pencil beam (symmetrical around
the f = 0° axis) with a main-lobe HPBW of approximately 22° and four minor
lobes. Find the directivity.

Solution. The directivity is given by

4
D=—p " 1)
L LP,(G] sin 0 4B d¢ ’

where the denominator equals the total beam area 0,

Since the pattern is symmetrical (no variation with ¢), the integral with
respect to ¢ yields 2x and (1) reduces to

In

D= <
2n J; P8 sin & 48

@

We have only_the pattern graph available (no analytical expression) so let us divide
the pattern (Fig. 3-16b) into 36 steps of 5° each. The approximate value of the inte-
gral in the first {m = 1) 5 section ( =#/36 rad} is given by

n . % 104093 .
3 P8}, sin 8, = ¥ 5 sn 25 (3

Main
tobe

Figwre 3-16m Power pattern with main lobe and several minor lobes
for worked example calculation of directivity, The pattern is symmetri-
lobes 4 arcund the # = 0 axis (vertical) with the 3-dimensional pattern &
figurc-of-revolution around this axia. The same pattern P(f) is shown
in rectangular coordinates in Fig. 3-16b,
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Figure }-16b FPower pattern with main lobe and several minor lobes for worked example
calculation of directivity. D equals the ratio of the dot-filled to cross-hatched areas, The same
pattern it polar coordinales is shown in Fig. 3-16a.

and the approximate directivity is then given by the summation of ail 36 sections or
by

D~ _ @
2mim/36) ¥ PS8, sin 8,
n=z1l
Completing the summation we obtain
72
dn 4r =180 (5

TR, Zn(n/36Y0.25 + 037 + 046 + 0.12+ 007)  127x

Main First Sccond T!_n'rd Fourth
lesbe minar minar minet :mb::)f
lobe labe o
obe (hack
labe}

or D=~126dBi

{t is noteworthy that the second minor lobe conlri‘butes most to the total beam area,
the first minor lobe almost as much and the main l_obe_ less than elth_er‘ T_hus, t'he
directivity is greatly affected by the minor lobes, whlch_ls a common situation with
actual antennas. For this antenna pattern the beam efficiency is given by
0.25
=—=020 {6)
T
If the second minor lobe were eliminated, the di“ﬂli;it)’ would increase to
14.5 dBi {up 1.9 dB) and if both first and second munor lobes were eliminated the
directivity would increase to 17.1 dBi (up 4.5 dB}.
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The directivity obtained in the above worked example is approximate. By
sufficiently reducing the step size (5° in the example), the summation can be made
as precise as the available data will allow. Computation of this numerical integra-
tion can be facilitated by using a computer.

The half-power bearn width of the pattern in the example is about 22°
Taking k, = 1 and ¢, as in (6), the approximate directivity is then

. _41000e, 41000 x 0.2
"k, x HPBW? ~  (22°p

which is 0.3 dB less than obtained by the 36-step summation.
The beam area of an isotropic source equals 4 steradians. In Fig. 3-16b
this corresponds 1o the area A under the sin § curve. The beam area of the source
in the worked example corresponds to the area a under the P8) sin 8 curve. .
Thus, the directivity is simply 4/a or the ratio of the area of the isotropic source
to the area of the source being measured. Hence,
_dr 4

Q, a

=169 or 12.3 dBi (7

D (8)
If the areas 4 and q are cut from a lead sheet of uniform thickness, the directivity
equals the ratio of the weight of A to the weight of a.

3-15 GAIN. The definition of directivity in the preceding section is based
entirely on the shape of the radiated power pattern. Antenna efficiency is not
involved. The gain parameter does involve antenna efficiency. The gain' of an
antenna is defined as

maximum radiation intensity

maximum radiation intensity from a
reference antenna with same power input

G=

(1

Any type of antenna may be taken as the reference. Often the reference is a linear
4{2 antenna. Gain includes the effect of losses both in the antenna inder con-
sideration (subject antenna) and in the reference antenna.

In many situations it is convenient to assume that the reference antenna is
an isotropic source of 100 percent efficiency. The gain so defined for the subject
antenna is called the gain with respect to an isotropic source or

G maximum radiation intensity {rom subject antenna

radiation intensity from {lossless) sotropic
source with same power input

)

! The gain G as here defined is sometimes called power gain. This quantity is equal to the square of
the gain in field intensity G s+ Thus, if £, is the maximum electric field intensity from the anatenna at a
large distance R and E, is the maximum clectric field intensity from the reference antenna with the
same power input at the same distance R, then the power gain G is given by G = (E /E,)® = G3.
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As given in (2-10-1), the gain with respect to the directivity is given by
G = kD (3}

where k = efficiency factor of antenna (0 < &k < 1}
D = directivity

Thus, the gain of an antenna over a lossless isotropic source equals the directivity
if the antenna is 100 percent efficient (k = 1) but is less than the directivity if any
losses are present in the antenna (k < 1). In decibels the gain over an isotropic
sonrce as in (2) is expressed as dBi. Directivity is always dBi.

3-16 FIELD PATTERNS, The discussion in the preceding sections is based
on considerations of power. This has afforded a simplicity of analysis, since the
power flow from a point source has enly a radial component which can be con-
sidered as a scalar quantity. To describe the field of a point source more com-
pletely, we need to consider the electric field E and/or the magnetic field H (both
vectors). For point sources we deal entirely with far fields so E and H are both

entirely transverse to the wave direction, are perpendicular to each other, are "

in-phase and are related in magnitude by the intrinsic impedance of the medium
(E/H = Z = 377 Q ior free space). For our purposes it suffices to consider only
one field vector and we arbitrarily choose the electric field E.

Since the Poynting vector around a point source is everywhere radial, it
follows that the electric field is entirely transverse, having only E; and E; com-
ponents. The relation of the radial component §, of the Poynting vector and the
electric field components is illustrated by the spherical coordinate diagram of
Fig 3-17a. The conditions characterizing the far field are then:

1. Poynting vector radial (S, component only)
2. Electric field transverse (Eq and £, components only)

Equatoerial Figmre 3-17a Relation of the Paynting vector and
plane the electric field components of the far field.

316 FIELD paTTERNS 105

The Poynting vector and the electric ficld at a point of the far field are
related in the same manner as they are in a plane wave, since, if r is sufficiently
large, a small section of the spherical wave front may be considered as a plane.

The relation between the average Poynting vector and the electric field at a
point of the far field is :

N R

(1)

‘
P | —

where Z, = intrinsic impedance of medium and

E=E; +E} (2)

where £ = amplitude of total electric field intensity
E, = amplitude of # component
E, = amplitude of ¢ component

The ficld may be elliptically, linearly or circularly polarized.
If the ficld components are rms values, rather than amplitudes, the Poyn-

- ting vector is twice that given in (1).

" A pattern showing the variation of the electric field intensity at a constant
radius # as a function of angle (8, ¢} is called a field pattern. In presenting infor-
mation concerning the far field of an antenna, it is customary to give the field
patterns for the two components, E, and E,, of the electric field since the total
electric field E can be obtained from the components by (2), but the cornponents

_cannot be obtained from a knowledge of only E.

When the field intensity is expressed in volts per meter, it is an absolute field
pattern.! On the other hand, if the field intensity is expressed in units relative to
its value in some reference direction, it is a relative field pattern. The reference
direction is usually taken in the direction of maximum field intensity. The relative
pattern of the E; component is then given by

£

E,. 3

and the relative pattern of the E, component is given by

21 @

Egm

where E,,, = maximum vatue of E,
E,, = maximum value of E;,

! The magnitude depends on the radius, varying inverscly as the distance (E o 1/r).
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The magnitudes of both the electric field components, E, and E,, of the far
field vary inversely as the distance from the source. However, they may be differ-
ent functions, F, and F,, of the angular coordinates, # and ¢. Thus, in general,

1
Ey=- F\(6, &) (5)

1 .
Ey=~ Fi6,9) (6)

Since S,, = E/2Z, where E,, is the maximum value of E, it follows on
dividing this into (1) that the relative total power pattern is equal to the square of
the relative total field pattern, Thus,

S, _U _[(EYV
P~=§**U"—(E) UES

Example 1. Consider first the case of an antenna whose far field has only an E,
component in the equatorial plane, the E, component being zero in this plane.
Suppose that the relative equatorial-plane pattern of the E, component (that is, £,
as a lunction of ¢ for 6 = 90°) is given by

E,
a = Cos ¢ {8)

This pattern is illustrated at the left of Fig. 3-17b. The length of the radius vector in
the diagram is proportional to E,. A pattern of this form could be produced by a
short dipole coincident with the y axis.

1 Ha_lf-power 1
Field ' points Power
patiern 07 pattern
X x
=0 ¢=0

Figure 3-17b  Relative E, pattern of Example 1 at left with relative power pattern at right.
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The relative (normalized) power pattern in the equatorial plane is equai to the
square of the relative field pattern. Thus

S, U {EY
P""s,,,_ U__(EM) ®)

and substituting (8} into (9) we have
P, =cos’ ¢
This pattern is iltustrated at the right of Fig. 3-17b.

Exsmple 2. Consider next the case of an antenna with a far field that has only an £,
component in the equatorial plane, the E, component being zero in this plane.
Assume that the relative equatorial-plane pattern of the E, component (that is, E, as
a function of ¢ for # = 90°) for this antenna is given by

Eg A
— =sin
E,. n ¢ (10}
This pattern is illustrated by Fig. 3-18a and could be produced by a small loop
antenna, the axis of the loop coincident with the x axis.

The relative {normalized) power paitern in the equatorial plane is

P,=sin’ ¢ {1
This pattern is shown by Fig. 3-185.

Example 3. Let us consider finally an antenna whose far field has both E, and E,
components in the equatorial plane (# = 90%). Suppose that this antenna is 2 com-
posite of the two antennas we have just considered in Examples 1 and 2 and that
equal power is radiated by each antenna. [f both patterns are of identical shape in 3
dimensions as well as in the xy plane, as from a short dipole and a small loop, it
then follows that at a radivs r from the composite antenng, E,,, = E,,,. The individ-
ual patterns for the E, and E, components as given by (10) and (8) may then be
shown to the same scale by one diagram, as in Fig. 3-19a. The relative paitern of the
total field E is

E£=Jsin’¢+oos’¢=1 (12)

which is a circle as indicated by the da~*zd line in Fig. 3-194.

x X
. =0 #=0
(a) &)

Figure 318" Relative £, pattern of Example 2 at () with relative power pattern at (b)
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Figure 3-19 () Relalive patterns of E, and E, components of the electric field and the total
field E for antenna of Example 3. (b) Relative total power pattern.

For this antenna, we may speak of two types of power patterns. One type
shows the power variation for one component of the glectric field. Thus, the power
in the E, component of the field is as shown by Fig. 3-18b and the power in the £_
component by Fig. 3-17h. The second type of power pattern shows the variation of
the total power. This is proportional to the square of the total electric field intensity.
Accordingly, the telative total power pattern for the composite antenna is

E 2
r=(g) -1

The relative pattern in the equatorial plane for the total power is, ‘therefore, a circle
of radius unity as illustrated by Fig. 3-19b.

We note in Fig. 3-194 that at ¢ = 45° the magnitudes of the two field com-
ponents, E, and E,, are equal. Depending on the time phase between E; and E,, the
field in this direction could be plane, elliptically or circularly polarized, but regard-
less of phase the power is the same. To determine the type of polarization requires
that the phase angle between E, and E, be known. This is discussed in the next
section.

317 PHASE PATTERNS. Assuming that the field varies harmonically
with time and that the frequency is known, the far field in all directions from a
source may be completely specified by a knowledge of the following four quan-
tities:!

' In general, for the near or far field, six quantities are required. These are E,, E,. 8, and 5, each as a
function of r, 8, ¢ and in addition the amplitude of the radial compenent of the electric field E, and its
phase lag behind E,, both as a function of r, 8, ¢. Since E, = 0 in the far field, orly the four quantitics
given are needed to describe completely the field in the Fraunhofer region.
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1. Amplitude of the polar component E, of the electric field as a function of r,
and ¢ -

2. Amplitude of the azimuthal component E, of the electric field as a function of
r,@and ¢ _
3. Phase lag é of E, behind E; as a function of & and ¢

4, Phase lag n of either field component behind its value at a reference point as a
functiont of r, & and ¢

Since we regard the field of a peint source as a far fickd everywhere, the
above four quantities can be considered as those required for a complete knowl-
edge of the field of a point source.

1f the amplitudes of the field components are known at a particular radius
from a point source in free space, their amplitudes at all distances are known
from the inverse-distance law. Thus, it is usually sufficient to specify E, and E, as
a function only of # and ¢ as, for example, by a set of field patterns.

As shown in the preceding sections, the amplitudes of the field components
give us directly or indirectly a knowledge of the peak and effective values of the
total field and Poynting vector. However, if both field components have a value,
the polarization is indeterminate without a knowledge of the phase angle &
between the field components. Focusing our attention on one field component,
the phase angle n with respect to the phase at some reference point is a functicn
of the radius and may also be a function of & and ¢. A knowledge of 77 as a
function of 0 and ¢ is essential when the ficlds of two or more point sources are
to be added.

We now proceed to a discussion of the phase angles, § and 5, and of phase
patterns for showing their variation. Let us consider three examples.

Example 1. Consider first a point source that radiates uniformly in the equatorial
plane and has only an E, component of the electric field. Then at a distance r from
the source, the instantaneous field E; in the equatorial plane is
\/EEo .
Ey =——"sin (wi — fr} )
r
where E, = rms value of ¢ component of electric field intensity at unit radius from
the source
w = 2nf, where f = [requency, Hz
B = 2n/i, where A = wavelength, m

The relation given by (1) is the equation for the ficld of a spherical wave
traveling radially outward from the source. The equation gives the instantaneous
value of the field as a function of time and distance. The amplitude or peak value of
the field is ﬁE,fr. The amplitude is independent of space angle {# and ¢) but
varies inversely with the distance r. The variation of the instantancous field with
distance for this example is illustrated by the upper graph in Fig. 3-20 in which the
amplitude is taken as unity &t a distance r. When r = 0, the variation of the instan-
taneous field varies as sin ewt. It is often convenient to take this variation as a refer-
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Minima or
constant phase
fronts

+10 -1
Instantaneow:
amplitude

Phase 360
Point !
source\ag 1 138;%%

Figure 3-20 [llustration for Ex-
ample 1. Phase of E, of point
source radiating uniformty in ¢
plane is a Function of r but is
Output independent of ¢. Phase lagn
indicator increases linearly with distance r.

Receiver

ence for the phase, designating it as the phase of the generator or source. The fact
that the amplitude at r = 0 is infinite need not detract from using the phase at r = 0
as a reference. The phase at a distance » is then retarded behind that at the source
by the anglé Br. A phase retardation or lag of E, with respect to a reference point
will, in general, be destgnated as . In the present case the reference point is the
source;' hence,

n=br=" ad) ®

Thus, the phase lag n increases linearly with the distance r from the source.
This is itlustrated by the chart of phase lag versus distance in Fig. 3-20.

The phase lag »n in this example is assumed to be independent of ¢. To
demonstrate experimentaily that ¢ depends on r but is independent of ¢, the
arrangement shown at the fower left in Fig. 3-20 could be used. The outputs of two
probes or small antennas are combined in a receiver. With both probes at or very
near the same point, the receiver output is reduced to a minimum by adjusting the
length of one of the probe cables. The voltages from the probes at the receiver are
then in phase opposition. With one probe fixed in position, the other is then moved

' If the phase is referred to some point at a distance », from the source, then (1) becomes E, =
(W 2E frysin (wt — fd), where d = r —r,
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in such a way as to maintain a minimum output. The locus of points for minimum
output constitutes a contour (or front) of constant phase. For the point source
under consideration, each contour is a circle of constant radius with a separation of
4 between contours. The radius of the contours is then given by r, + nd, where r| is
the radius to the reference probe and » is any integer.

We may define a phase front as a (3-dimensional}) surface of constant or
uniform phase. If our observation circle coincides with a phase front, then we have
constant phase along it.

Example 2. Consider next the case of a point source that has cnly an E, component
and that radiates nonuniformly in the equatorial or¢ plane. Let the instantaneous
value in the equatorial plane be given by
2E )
Ey= Q €os ¢ sin {(wt — fr) {3
r
where E,, = rms value of E, component at unit radius in the direction of maximum
fieid intensity

Let a point at unit radius and in the direction ¢ = 0 be taken as the reference
for phase. Then at this radius,

E, = \/EE” cos ¢ sin ot &)
®=180"
$=270" &=90°
¥ = . s ¥
J I -
L2
—
x —
$=0 X
(a} =0 ©
= 380" R
L]
B 270 e
[~}
m'lso’ ——
2
B 90°
K o i 1 1
o° a0° 180" 270" 380" 90" 18O°

&

Figure 3-21 Hlustration for Example 2. Field pattern is shown at (a), the phase pattern jr-
rectangular coordinates at () and in polar coordinates at {¢).
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Quadrant™3 Quadrant 2

¥

Output
indicator

o=

$=0
Cuadrant 4 Quadrant 1

Figure 3-22 Constant-phase contours for source of Example 2.

Setting sin of = 1, the relative field pattern of the E, component as a function of ¢
is, therefore,

E,=cos ¢ . (5

as iliustrated in Fig. 3-2la. A pattern of this type could be obtained by a short
dipole coincident with the y axis at the origin. The phase lag n as & function of ¢ is
a step function, as shown in the rectangular graph of Fig. 3-216 and in the polar
graph of Fig. 3-21¢. The variation shown is at a constant radius with the phase in
the direction ¢ = 0 as a reference. We note that n has an apparent discontinuity of
180° as ¢ passes through 90° and 270°, since at these angles cos ¢ changes sign
while passing through zero magnitude. The phase angle y is accordingly a contin-
uous, linear function of r but a discontinuous, step function of ¢. To demonstrate
this variation experimentally, the two-probe arrangement described in Example 1
may be used. In practice, attenuators (not shown) would be desirable in the probe
leads to equalize the probe outputs. Referring to Fig 3-22, if both fixed and
movable probes are in the lower quadrants (1 and 4}, a set of constant or equiphase
circles is obtained with a radial separation of A If one probe is fixed in quadrant 1
while the upper quadrants are explored with the movable probe, a set of equiphase
circles is obtained which have a radial separation of A but are displaced radially
from the set in the lower quadrants by 4/2. Thus, the constant-phase contours have
an apparent discontinuity at the y axis, as shown in Fig. 3-22. The phase of the field
of any linear antenna coincident with the y axis exhibits this discontinuity at the y
axis.!

! It is to be noted that this phase change is actually a characteristic of the method of measurement,
since by a second method no phase change may be cbserved between the upper and lower hemi-
spheres. In the second methad the probe is moved from the upper to the lower hemisphere along a
circular path in the xz plane at a constant radius from the source. However, for a linear antenna the
secand method is trivial since it is equivalent to #otating the antenna on its own axis with the probe
at a fixed position.
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Example 3. Consider lastly a point source which radiates a field with both E, and
E, components in the equatorial plane, the instantaneous values being given by
2E, . .
Ep= V/2Em sin ¢ sin (wt — fr) (6)
r

NI

r

and Ey,= cos ¢ sin (wr —fpr— g) (7}
Referring to Fig. 3-23, a field of the form of the E, component in the equatorial
plane could be produced by a smail loop at the origin oriented parallel to the yz
plane. A field of the form of the E, component in the equatorial plane could be
produced by a short dipole at the origin coincident with the y axis. Let a point at
unit radius in the first quadrant be taken as the reference for phase. Assuming that
the loop and dipole radiate equai power,

Eg = Em (8

Then at urit radius the relative patterns as a function of ¢ and ¢ are given by

Eg = sin ¢ sin wi "
. T
and Egi = cos ¢ sin (wt - 5)
= —cos ¢ cos wi (10)

The relative field patterns in the equatorial plane are shown in Fig. 3-23. With
the doop and dipole fed in-phase, their field components are in phase quadrature
(8 = n/2). In quadrants 1 and 3, E, lags £, by 30°, while in quadrants 2 and 4, E,
leads E, by 90°. The phase patierns in the equatorial plane for E, and E, are shown
in polar form by Fig. 3-24 and in rectangular form by Fig. 3-25a.

Since Eq4, E, and & are known, the polarization ellipses may be determined.
These polarization ellipses for different directions in the equatorial ptane are shown
in Fig. 3-25b. It is to be noted that in quadrants ! and 3, where E, lags E,. the E

Cuadrant 3
E, lags 90°

Quadrant 2
E, leads 90°

£y
¥
Quadrant 4\ Quadrant 1
E, leads 90° E, lags 90"
) Figare 3-23 Ficld patterns for source-
¢-J=‘ 4] of Example 3.
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$»=270"

¢=0°
Figure 3-24 Phase lag as a function of ¢ for field components of source of Example 3.

vecter rotates counterclockwise, while in quadrants 2 and 4, where E, leads E,, the
rotation is clockwise.

At four angles the polarization is circular, E rotating counterclockwise at
¢ = 45" and 225" and rotating clockwise at ¢ = 135° and 315°, The polarization is
linear at four angles, being horizontally potarized at 0° and 180° and vertically
potarized at 90° and 270" At all other angles the polarization is elliptical, but the
power is constant as a function of ¢ (regardless of the polarization).

360°F
Ph.
ase lag, » E,
270°F
1807 E, E,
90° E,—>
o 1 1 [1 l

1 1 (]
o° 45° 80®  135° 180"  225° 270" 325" 360°
@
{a)

e P Y di— . 3
—o0Q01 00— Q0 | 00—
ar 45° 90* 138" 180° 228 270° 315" 360" .
22,5 /7.5 !
]
b)
Figure 3-25 Phase patierns in rectangular coordinates for source of Example 3 at (2] with
pelarization ellipses for every 22.5° interval of ¢ at (b,
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3-18 GENERAL EQUATION FOR THE FIELD OF A POINT
SOURCE. Both components of the far field of a point source in free space vary
inversely with the distance. Therefore, in general, the two electric field com-
ponents may be expressed as

Eo =222 1,0, 9 m

E
and E,= % 6, ¢) (2)

where E,, = rms value of E; component at unit radius in the direction of
maximum field
E,, = ms value of E;, component at unit radius in the direction of
maximum field
f, and f; are, in general, different functions of 8 and ¢ but of maximum
value unity

The instantanecus values of the field components vary harmonically with
time and are given by (1) and (2) multiplied, in general, by different functions of
the time. Thus, for the instantaneous field components

2E,, _
Ey = SELS J18, ) sin (ot —n) 3

r

and E, = Qf’ﬂ o8- &) sin (wt —n — 8) {4}

T

where # = f(r — r,} + fo(8, )
5 :f4(69 ¢)
r = radius to field point {r, 6, ¢}
r, = radius of point to which phase is referred
f; and f, are, in general, different functions of # and ¢

The instantaneous value of the total electric field at a point (r, 8, ¢} duc to a
point source is the vector sum of the instantaneous values of the two com-
ponents. That is,

E =8,Fy +a,E, (3)

where a, = unit vector in & direction
a, = unit vector in ¢ direction

Substituting (3) and (4) into (5) then gives a general equation for the electric field
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of a point source at any point (r, 6, ¢) as follows:

£ = a0 L2 10, gysin r = + 3, L2582 10, 9y sin o —n-0) (9

In this equation the instantaneous total electric field vector E; is a function of
both space and time; thus

E,=flr,0,¢.1) (7

The far field is entirely specified by (6). When f, and f, are complicated expres-
sions, it is often convenient to describe E; by means of graphs for the four quan-
tities Ey, E,, 1 and &, as has been discussed. It is assumed that the field varies
harmonically with time and that the frequency is known.

PROBLEMS?
_¥3-1 Directivity.

{(a} Calculate the exact directivity for three unidirectional sources having the fol-
lowing power patterns:

U = U,sin 8 sin® ¢
U=1U,sin 0 sin* ¢
U =U_sin? §sin* ¢

U/ has a value only for 0 < 8 < w and 0 < ¢ < ¢ and is zero elsewhere.

{b) Calculate the approximate directivity from the product of the half-power beam
widths for each of the sources.

(¢) Tabulate the results for comparison.

32 Directivity. Show that the directivity for a source with a unidirectional power
pattern given by U = U, cos" § can be expressed as D = 2(n + 1). U has a value
only for ¢ < 8 < n/2 and 0 < ¢ < 2= and is zero elsewhere.

*3.3  Solar power. The earth receives from the sun 2.2 gcal min ™! em ™2
(@) What is the corresponding Poynting vector in watts per square meter ?
() What is the power output of the sun, assuming that it is an isotropic source?
{c) What 15 the rms field intensity at the earth due to the sun’s radiation, assuming
all the sun’s energy is at a single frequency?
Note: 1 watt = 143 g cal min~"
Distance earth to sun = 149 x 10% km

3-4 Directivity and minor lobes. Prove the following theorem: if the minor lobes of a
radiation paitern semnain constant as the beam width of the main lobe approaches
zero, then the directivity of the antenna approaches a constant vatue as the beam
width of the main lobe approaches zero.

! Answers to starred (*) problems are given in App. D.
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3.5 Directivity by integration.

(a) ‘Calculate by graphical integration or numerical methods the directivity of a
source with a vnidirectional power pattern given by U = cos 8. Compare this
directivity value with the exact value. UJ has a value only for 0 <8 < #/2 and
0 < ¢ < 2n and is zero elsewhere. _ .

() Repeat for a unidirectional power pattern glven by U = cosl a.

{c} Repeat for a unidirectional power pattern given by U = cos® 8.

1.6 Directivity. Calculate the directivity for a source with relative field pattern

FE = cos 20 cos 8.




CHAPTER

ARRAYS
OF POINT
SOURCES

4-1 INTRODUCTION. In Chap. 2 an antenna was treated as an aperture..

In Chap. 3 an antenna was considered as a single point source. In this chapter we
continue with the point-source concept, but extend it to a consideration of arrays
of point sources. This approach is of great value since the pattern of any antenna
can be regarded as produced by an array of point sources. Much of the dis-
cyssion will concern arrays of isotropic point sources which may represent many
different kinds of antennas. Arrays of nonisotropic but similar point sources are
al_so treated, leading to the principle of pattern multiplication. From arrays of
discrete point sources we proceed to continuous arrays of point sources and
. Huygens® principle.

: 4—2 ARRAYS OF TWO ISOTROPIC POINT SOURCES. Let us
m_troduce the subject of arrays of point sources by considering the simplest situ-
ation, namely, that of two isotropic point sources. As illustrations, five cases
involving two isotropic point sources will be discussed.

4-2a Case 1. Two Isotropic Point Sources of Same Amplitude and
Phgse. The first case we shall analyze is that of two isotropic point sources
having equal amplitudes and oscillating in the same phase. Let the two point
sources, 1 and 2, be separated by a distance 4 and located symmetrically with
Tespect to the origin of the coordinates as shown in Fig. 4-1a. The angle ¢ is
measured counterclockwise from the positive x axis. The origin of the coordi-
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Figmre 41 (a) Relation to coordinate system of 2 isotropic point sources scparated by a distance d.
(B) Vector addition of the fields from two isotrapic point sources of equal ampiitude and same phasc

located as in (). (c} Field pattern of 2 isotropic point sources of equal amplitude and same phase
located as in {a) for the casc where the separation 4 is /2.

nates is taken as the reference for phase. Then at a distant point in the direction
¢ the field from source 1 is retarded by 4d, cos ¢, while the field from source 2 is
advanced by 1d, cos ¢, where d, is the distance between the sources cxpressed in
radians; that is,

2nd
d, = = pd
The total field at a large distance r in the direction ¢ is then
E= Eo e_”'u + Eo e+»'u (1)

where = d, cos ¢ and the amplitude of the ficld components at the distance r is
given by E, .
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The first term 1n {1} is the component of the field due to source t and the
second term the component due to source 2. Equation (1) may be rewritien

ptWIT 4 g il

 E=2E 2
0 3 2)
which by a trigonometric identity is
; 'ﬁ dr
E = 2E; cos 3= 2E; cos - cos ¢ 3)

This result may also be obtained with the aid of the vector diagram' shown
in Fig. 4-1b, from which (3) follows directly. We note in Fig. 4-1b that the phase
of the 1otal field E does not change as a function of ¢. To normalize (3), that is,
make its maximum value unity, set 2E, = 1. Suppose further that 4 is 4/2. Then
d, = n. Introducing these conditions into (3) gives

E = cos (g cos ¢:) (4)

The field pattern of E versus ¢ as expressed by (4} is presented in Fig. 4-1¢c. The
patters is a bidirectional figure-of-cight with maxima along the y axis. The space
pattern is doughnut-shaped, being a figure-of-revolution of this pattern around
the x axis.

The same pattern can also be obtained by locating source I at the origin of
the coordinates and source 2 at a distance 4 along the positive x axis as indicated
in Fig. 4-2a. Taking now the field from source 1 as reference, the ficld from
source 2 in the direction ¢ is advanced by d, cos ¢. Thus, the total ficld E at a
large distance r is the vector sum of the fieids from the two sources as given by

E=E,+ Eget? (5)
where ¢ = d, cos ¢

The relation of these fields is indicated by the vector diagram of Fig. 4-2b. From
the vector diagram the magnitude of the total field is
d, cos ¢

E =2E; cos L4 = 2E; cos

3 (©

as obtained before in (3). The phase of the total field E is, however, not constant
in this case but is /2, as also shown by rewriting (5) as

w2 — w2
E = Efl + &%) = 2E,eM? (i%—) = 2E,eM? cos % (7

"It is to be noted thai the quantities represented here by vectors are nol true space vectors but
merely vector representations of the tme phase (i.e., phasors).
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Figme 4-2 {a) Two isotropic point sources with the origin of the coordinate system coincident with
one of the sources. (b} Vector addition of the fields from 2 isotropic point sources of equal amplitude
and same phase located as in (g). () Phase of total field as a function of ¢ for 2 isotropic point sources
of same amplitude and phase spaced 1/2 apart. The phase change is zero when referred to the oenter
puim of the array bul is /2 as shown by the dashed curve when referred to souree 1.

Normalizing by setting 2E, = 1, (7) becomes

E =e"? cos %’— = ¢os % /2 (8)
1n (8} the cosine factor gives the amplitude variation of E, and the exponential or
angle factor gives the phase variation with respect to source 1 as the reference.
The phase variation for the case of 4/2 spacing (d, = ) is shown by the dashed
line in Fig. 4-2¢c. Here the phase angle with respect to the phase of source 1 is
given by ¥/2 = (n/2) cos ¢. The magnitude variation for this case has already
been presented in Fig. 4-1¢. When the phase is referred to the point midway
between the sources (Fig. 4-1a), there is no phase change around the array as
shown by the solid line in Fig. 4-2c. Thus, an observer at a fixed distance
observes no phase change when the array is rotated (with respect to ¢) around its
midpoint, but a phase change (dashed curve of Fig. 4-2¢) is observed if the array
is rotated with source 1 as the center of rotation.

4-2b Case 2. Two Isotropic Point Sources of Same Amplitude but
Opposite Phase. This case is identical with the one we have just considered
except that the two sources are in opposite phase instead of in the same phase.
Let the sources be located as in Fig. 4-la. Then the total field in the direction ¢
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at a large distance r is given by

E=Eje*M¥?* -~ E e M? 1]
from which
. . . . {d,
E = )E, sin 5= 2fE4 sin 5 cos ¢ (10

Whereas in Case 1 (3) involves the cosine of /2, (10) for Case 2 involves the
sine. Equation (10) also includes an operator j, indicating that the phase reversal
of one of the sources in Case 2 results in a 90° phase shift of the total field as
compared with the total ficld for Case 1. This is umimportant here. Thus, putting
2jE, = 1 and considering the special case of d = 1/2, (10) becomes

E =sin (g cos ¢) (11
The directions ¢, of maximum field are obtained by setting the argument
of (11) equal to +(2k + 1)=/2. Thus,

n n
Ecos P = {2k + l}-z- (11a)

where k =0, 1,2,3.... Ferk=0,cos ¢, = +1and ¢, = 0°and 130°.
The null directions ¢, are given by

gcos b0 = +hn (118)

Fork =10, ¢y = +90°.
The half-power directions are given by

kil
2

Fork=0,¢ = +60°, +120°

The field pattern given by (11) is shown in Fig. 4-3. The pattern is a rela-
tively broad figure-of-eight with the maximum field in the same direction as the
line joining the sources {x axis). The space pattern is a figure-of-revolution of this
pattern around the x axis. The two sources, in this case, may be described as a
simple type of “end-fire” array. In contrast to this pattern, the in-phase point
sources produce a pattern with the maximum field normal to the line joining the
sources, as shown in Fig. 4-1c. The two sources for this case may be described as
a simple * broadside ™ type of array.

cos ¢ = +(2k + 1)% 119

4-2¢ Case 3. Two Isotropic Point Sources of the Same Amplitude and in
Phase Quadrature. Let the two point sources be located as in Fig. 4-1a. Taking
the origin of the coordinates as the reference for phase, let source 1 be retarded

42 ARRAYS OF TWO ISOTROFIC POINT sources 123

90 66°

M

Figure 43 Relative field pattern for 2 isotropic point sources of the same amplitude but opposite
phase, spaced 1,2 apart.

by 45° and source 2 advanced by 45°. Then the total field in the direction ¢ at a
large distance r is given by

E=E, exp|:+j(i'-(—:§s-—¢+§)]+Eo cxp[—j(@wL;)] {12

From (12) we obtain

; ,
E = 2E, cos (§+-2rcos ¢) (13)

Letting 2E, = t and d = 4/2, (13) becomes

£ = cos (§+gcos ¢) (14)

The field pattern given by (14) is presented in Fig. 4-4. The space pattern is a
figure-of-revolution of this pattern around the x axis. Most of the radiation is in
the second and third quadrants. It is interesting to not¢ that the field in the
direction ¢ = 0° is the same as in the direction ¢ = 180°. The directions ¢,, of
maximum field are obtained by setting the argument of (14) equai to kz, where
k=0,1,23.... Inthis way we obtain

+§cos P, =kn (15)

A
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Figure 4-4 Relative field pat-
tern of 2 isotropic point sources
of the same amplitude and in
phase quadrature for a spacing
of i/2. The source to the right
leads that to the left by 907,
For k =0,
n n
—COS = —— i
3 €08 bo= — (16)
and ¢, = 120° and 240° (17
If the spacing between the sources is reduced to 4/4, (13) becomes
A '
E =rcos (Z + 7 °°8 ¢) (18)

The fieid pattern for this case is illustrated by Fig. 4-5a. It is a cardioid-shaped,
unidirectional pattern with maximum field in the negative x direction. The space
pattern is a figure-of-revolution of this pattern around the x axis,

A simple method of determining the direction of maximum field is illus-
trated by Fig. 4-5b. As indicated by the vectors, the phase of source 2 is 0° (vector
to right) and the phase of source 1 is 270° (vector down). Thus, source 2 leads
source 1 by 90°.

To find the field radiated to the left, imagine that we start at source 2 (phase
0%} and travel to the left, riding with the wave (phase 0°) like a surfer rides a
breakzr, The phase of the wave we are riding is 0° and does not change but by
the time we have traveled 4/4 and arrived at source 1, a 4-period has elapsed so
the current in source 1 will have advanced 90° {vector rotated ccw) from 270° to
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Figure 45 (a) Relative field pattern of 2 isotropic sources of same amplitude and in phase quadra-
ture for a spacing of i/4. Source 2 leads source | by 90°. (4 Vector diagrams illustrating fieid
reinforcement in the —-x direction and field cancellation in the + x direction.

0°, making its phase the same as that of the wave we are riding, as in the middle
diagram of Fig. 4-5h. Thus, the field of the wave from source 2 reinforces that of
the field of source 1, and the two fields travel to the left together in phase produc-
ing a maximum field to the left which is twice the field of either source alone.

Now imagine that we start at source 1 with phase 270° (vector down) and
travel to the right. By the time we arrive at source 2 the phase of its field has
advanced from 0 to 90° so it is in phase opposition and cancels the field of the
wave we are riding, as in the bottom diagram in Fig. 4-3b, resulting in zero radi-
ation to the nght.

4-2d Case 4. General Case of Two Isotropic Point Sources of Equal
Amplitude and Any Phase Difference. Proceeding now to a more general situ-
ation, let us consider the case of two isotropic point sources of equal amplitude
but of any phase difference 8. The total phase difference W between the fields from
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source 2 and source 1 at a distant point in the direction ¢ (see Fig. 4-24} is then
Yy=dcosgp+d (19)

Taking source 1 as the reference for phase, the positive sign in (19) indicates that
source 2 is advanced in phase by the angle 8. A minus sign would be used to
indicate a phase retardation. If, instead of referring the phase to source 1, it is
referred to the centerpoint of the array, the phase of the field from source 1 at a
distant point is given by —i/2 and that from source 2 by +y/2. The total ficld is
then

E = Ege™? + ¢ ¥2) = 2E, cos % (20

Normalizing (20), we have the general expression for the field pattern of two
isotropic sources of equal amplitude and arbitrary phase,

E =cos _'i’_ (21)
2
where ¥ is given by (19). The three cases we have discussed are obviously special
cases of (21} Thus, Cases 1, 2 and 3 are obtained from (21) when é = (°, 180° and
90° respectively.

4-2¢ Case 5, Most General Case of Two Isotropic Point Sources of
Unequal Amplitude and Any Phase Difference. A still more general situation,
involving two isotropic point sources, exists when the amplitudes are unequal
and the phase difference is arbitrary. Let the sources be situated as in Fig. 4-6a
with source 1 at the origin. Assume that the source 1 has the larger amplitude
and that its field at a large distance r has an amplitude of E,. Let the field from
source 2 be of amplitude aE, (0 < a < 1) at the distance r. Then, referring to
Fig. 4-6b, the magnitude and phase angle of the totat field E is given by

E = Eqo/(1 + acos ) + a® sin? ¢ farctan [a sin ¢/(1 +acos )] (22

where ¢ = d, cos ¢ + & and the phase angle (/) is referred to source.l. This is
the phase angle ¢ shown in Fig. 4-6b.

]

Figure 46 {g) Two isotropic point sources of unequal amplitude and arbitrary phase with respect to
the coordinate system. (b} Vectar addition of fields from wnequal sources arranged as in (@) The -
amplitude of source 2 is assumed to be smaller than that of source 1 by the factor a.
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4-3 NONISOTROPIC BUT SIMILAR POINT SOURCES AND
THE PRINCIPLE OF PATTERN MULTIPLICATION. The ocases
considered in the preceding section all involve isotropic point sources. These can
readily be extended to a more general situation in which the sources are non-
isotropic but similar.

The word similar is here used to indicate that the variation with absolute
angle ¢ of both the amplitude and phase of the field is the same.! The maximum
amplitudes of the individual sources may be unequal. If, however, they are also
equal, the sources are not only similar but are identical.

As an example, let us reconsider Case 4 of Sec. 4-2d in which the sources
are identical, with the modification that both sources 1 and 2 have field patterns
given by

Ey= Ep sin ¢ (1)

Patterns of this type might be produced by short dipoles oriented parallel to the
x axis as suggested by Fig. 4-7. Substituting (1) in {4-2-20) and normalizing by
setting 2E, = 1 gives the field pattern of the array as

E = sin ¢ cos % (2)

where ft =d, cos ¢ + &

This result is the same as obtained by multiplying the pattern of the indi-
vidual source (sin @) by the pattern of two isotropic point sources (cos #/2).

If the similar but unequal point sources of Case 5 (Sec. 4-2e) have patterns
as given by (1), the total normalized pattern is

E =sin ¢,/(1 + a cos $)* + a* sin® ¢ 3

- Here again, the result is the same as that obtained by muitiplving the pattern of

the individual sonrce by the pattern of an array of isotropic peint sources.

Figure 47 Two nonisotropic sources with respect
to the coerdinale sysiem.

! The patterns not only must be of the same shape but 2lso must be oricnted in the same direction 1o
be called “ similar.”
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These are examples illustrating the principle of pattern multiplication, which
may be expressed as follows:

The field pattern of an array of nonisotrepic but similar point sources is the product of
the pattern af the indisidual source and the pattern of an array of isotrepic point
sources, having the same locations, relative amplitudes and phases as the nonisofropic
pGint sources.

This principle may be applied to arrays of any number of sources provided only
that they are similar. The individual nenisotropic source or antenna may be of
finite size but can be considered as a point source situated at the point in the
antenna to which phase is referred. This point is said to be the * phase center.”
The above discussion of pattern multiplication has been concerned only
with the field pattern or magnitude of the field. If the field of the nonisotropic
source and the array of isotropic sources vary in phase with space angle, i.e, have
a phase pattern which is not a constant, the statement of the principle of pattern
multiplication may be extended to include this more general case as follows:

The total field pattern of an array of nonisotropic but similar sources is the product of
the individua! source pattern and the partern of an array of isotropic peint sources each
located at the phase center of the individual source and having the same relative ampli-
rude and phase, while the total phase pattern is the sum of the phase patterns of the
individual source and the array of isotropic point sources.

The total phase pattern is referred to the phase center of the array. In symbols,
the total field E is then

E =106, FO, §) [ L0, 0) + F6, §)
Field pattern Phase patiern
where f{8, ¢} = field pattern of individual source
148, ¢) = phase pattern of individual source
F(8, ¢) = ficld pattern of array of isotropic sources
F (0, ¢) = phase pattern of array of isotropic sources

The patterns are expressed in {4) as a function of both polar angles to indi-
cate that the principle of pattern multiplication applies to space patterns as well
as to the two-dimensional cases we have been considering.

To iltustrate the principle, let us apply to it two special modifications of
Case 1 (Sec. 4-2a). o

Example 1. Assume two identical pomt sources separated by a distance d, each
source having the field pattern given by (1) as might be obtained by tweo short
dipoles arranged as in Fig. 4-7. Let 4 = 4/2 and the phase angle § = 0. Then the
total field pattern is

E = sin ¢ cos G cos ¢) 5)

This pattern is illustrated by Fig. 4-8c as the product of the individual source
pattern (sin ¢} shown at (a) and the array pattern {cos [{#/2) cos ¢]} as shown at
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{a) &y {c)

Figore 4-8 Example of pattern multiplication. Two nonisotropic but identical point sources
of the same amplitude and phase, spaced A/2 apart and arranged as in Fig. 4-7, produce the
pattern shown at (c). The individual source has the pattern shown at (@), which, when multi-
plied by the pattern of an array of 2 isotropic point sources (of the same amplitude and phase)
as shawn at (b), yickds the total array pattern of (¢).

(). The pattern is sharper than it was in Case 1 (Sec. 4-2a) for the isotropic sousces.
In this instance, the maximum field of the individual source is in the direction
¢ = 90°, which coincides with the direction of the maximum field for the array of
two isotropic sources. '

Example 2. Let us consider next the situation in which d = 4/2 and =0 as in
Example 1 but with individual source patterns given by

Ey=FE,cos ¢ (6)

This type of pattern might be produced by short dipoles oriented paraliel to the y
axis as in Fig, 4-9. Here the maximum field of the individual source is in the direc-
tion (¢ = 0} of a null from the array, while the individual source has & nuil in the
direction (¢ = 90°) of the pattern maximumn of the array. By the principle of patfern
multiplication the total normalized field is

n
E = cos ¢ cos (5 cos ¢) N

¥
Short
dipcles

™~ 4
1 ]2
X
vt
2 . Figure 49 Array of 2 nonisotropic sources
with respect 10 the coordinate system.
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AN N

(a) &) (e}

Figure 4-10 Example of pattern muliiplication. Total array pattem (¢} as the product of
pattern (a) of individual nonisotropic source and pattern (b) of array of 2 isotropic sources. The
pattern (b) for the array of 2 isotropic sources is identical with that of Fig. 4-8b, but the
individual source patiern (a}is rotated through 90° with respect to the one in Fig. 4-8a.

The total array pattern in the xy plane as given by (7) is illustrated in Fig.
4-10¢ as the product of the individual source pattern (cos ¢) shown at (@) and the
array pattern {cos [(m/2) cos ¢]} shown at (b). The total array pattern in the xy
plane has four lobes with nulls at the x and y axes.

The above examples illustrate two applications of the principle of pattern
multiplication to arrays in which the source has a simple pattern. However, in the
more general case the individual source may represent an antenna of any com-
plexity provided that the amplitude and phase of its field can be expressed as a
function of angle, that is to say, provided that the field pattern and the phase
pattern with respect to the phase center are known. If only the total field pattern
is desired, phase patterns need not be known provided that the individual sources
are identical.

If the arrays in the above examples are parts of still larger arrays, the
smaller arrays may be regarded as nonisotropic point sources in the larger
array---another application of the principle of pattern multiplication yielding the
complete pattern. In this way the principle of pattern multiplication can be
applied n times to find the patterns of arrays of arrays of arrays.

4-4 EXAMPLE OF PATTERN SYNTHESIS BY PATTERN
MULTIPLICATION. The principle of pattern multiplication, discussed in the
preceding section, is of great value in pattern synthesis. By pattern synthesis is
meant the process of finding the source or array of sources that produces a
desired pattern. Theoreticaily an array of isotropic point sources can be found
that will produce any arbitrary pattern. This process is not always simple and
may yield an array that is difficuit or impossible to construct. A simpler, less
elegant approach to the problem of antenna synthesis is by the application of
pattern multiplication to combinations of practical arrays, the combination
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Figure 411 {g) Requirements for pattern of broadcast station and {(b) idealized pattera fulfilling
thiem,

whith best approximates the desired pattern being arrived at by a trial-and-error
Pprocess.

To illustrate this application of pattern multiplication, let us consider the
following hypothetical problem. A broadcasting station {in the 500- to 1500-kHz
frequency band) requires a pattern in the horizontal plane fulfilling the conditions
indicated in Fig. 4-11a. The maximum field intensity, with as little variation as
possible, is to be radiated in the 90° sector between northwest and northeast. No
nulls in the pattern can occur in this sector. However, nulls may occur in any
direction in the complementary 270° sector, but, as an additional requirement,
nulls must be present in the due east and the due southwest directions in order to
prevent interference with other stations in these directions. An idealized sector-
shaped pattern fulfilling those requirements is illustrated in Fig. 4-1tb. The
antenna producing this pattern is to consist of an array of four vertical towers.
The currents in all towers are to be equal in magnitude, but the phase may be
adjusted to any relationship. There is also no restriction on the spacing or geo-
metrical arrangement of the towers.

Since we are interested only in the horizontal plane pattern, each tower
may be considered as an isotropic point source. The problem then becomes one
of finding a space and phase relation of four isotropic point sources located in the
horizontal plane which fulfills the above requirements.

The principle of pattern muitiplication will be applied to the solution of this
problem by seeking the patterns of two pairs of isotropic sources which yield the
desired pattern when multiplied together. First let us find a pair of isotropic
sources whose pattern fulfills the requirements of a broad lobe of radiation with
maximum north and a null southwest. This will be called the *“ primary ” pattern.

Two isotropic sources phased as an end-fire array can produce a pattern
with a broader major lobe than when phased as a broadside-array (for example,
compare Figs. 4-1c and 4-5). Since a broad lobe to the north is desired, an end-
fire arrangement of two isotropic sources as shown in Fig 4-12 will be tried.
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Figwe 412 Arrangement of 2 isctropic point sources for
both primary and secondary arrays.

o

From a consideration of pattern shapes as a function of separation and phase,' a
spacing between 4/4 and 34/8 appears suitable (see Fig. 11-11). Accordingly, let
d == 0.34. Then the field pattern for the array is

1
= = 1
E =cos 5 1)
where W =006ncos ¢+ 8 2)
For there to be a null in the pattern of (1) at ¢ = 135° it is necessary that?
¥ ={2k + 1)} (3)

wherek=0,1,2,3,...
Equating (2) and (3) then gives

—0.6m ﬁ +5={2k+ {4)
or d={2k+ I)m + 0425n (M]]

For k=0, § = —104°. The pattern for this case {d =034 and é = —104°) is
illustrated by Fig. 4-13a.

~ Next, let us find the array of two isotropic point sources that will produce a
pattern that fulfills the requirements of a null at ¢ = 270° and that also has a
broad lobe to the north. This will be called the “secondary ™ pattern. This paitern

! See, for example, G. H. Brown, “.Diractional Antennas,” Proc. IRE, 25, January 1937; F. E. Terman,
Radio Engineers' Handbook, MoGraw-Hill, New York, 1943, p. 804; C. E. Smith, Directional
Antennas, Cleveland Institute of Radio Electronics, Clevetand, QOhio, 1944.

* The azimuth angle ¢ (Fig. 4-12) is measured counterclockwise {cow) from the north. This is consis-
tent with the engineering practice of measuring positive angles in a counterclockwise sense. However,
it should be noted that the geodetic azimuth angle of a point is measured in the opposite, or clockwise
{cw), sense from the reference direction, which is sometimes taken as south and sometimes as north.
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] =0

Primary pattern . Total array pattern
d=03% 8= -104 Secongary partern {c)
(@) d=0.6x 4=180"
&) 1
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. . 0.3 yt !
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Primary arcay Secondary array L sl
Total amray

Figure 4-13 Field patterns of primary and secondary arrays of 2 isotropic sources which mudtiplied
together give patiern of total array of 4 isotropic sources.

multiplied by the primary array pattern will then yield the total array pattern. If
the secondary isotropic sources are also arranged as in Fig. 4-12 and have a
phase difference of 180°, there is a null at ¢ = 270°. Let the spacing d = 0.61.
Then the secondary pattern is given by (1) where

W=12nrcos g +n : (6)

The pattern is illustrated by Fig. 4-13b. By the principle of pattern multiplication,
the total array: pattern is the product of this pattern and the primary array
pattern, or

E = cos (54° cos ¢ — 52°) cos (108° cos ¢ + 90°) ¥},

This pattern, which is illustrated by Fig. 4-13c, satisfies the pattern requirements.
The complete array is obtained by replacing cach of the isotropic sources of the
secondary pattern by the two-source artay producing the primary pattern. The
midpoint of each primary array is its phase center, so this point is placed at the
location of a secondary source. The complete antenna is then a linear array of
four isotropic point sources as shown in the lower part of Fig. 4-13, where now
each source represents a single vertical tower. All towers carry the same current.
The current of tower 2 leads tower 1 and the current of tower 4 leads tower 3 by
104°, while the current in towers | and 3 and 2 and 4 are in phase opposition.
The relative phase of the current is illustrated by the vectors in the lower part of
Fig. 4-13c. :
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Figure 4-14 Phase patterns of §rirnary, secondary and total arrays having the field patierns shown
in Fig 4-13. Phase patterns are given for the phase center at the midpoint of the array and at the

southernmost source, the arrangemenl of the arrays and the phase centers being shown al d). The

phase angle ¢ is adjusted to zero at ¢ = 0 in all cases.

The solution obtained is only one of an infinite number of possible solu-
tions involving four towers. It is, however, a satisfactory and practical solution to
the problem.

The phase variation ¢ around the primary, secondary and total arrays is
shown in Fig. 4-14a, b and ¢ with the phase center at the centerpoint of each
array and also at the southernmost source. The arrangement of the arrays with
their phase centers is illustrated in Fig. 4-14d for both cases.

4-5 NONISOTROPIC AND DISSIMILAR POINT SOURCES. In
Sec. 4-3 nonisotropic but similar point sources were discussed, and it was shown
that the principle of pattern multiplication could be applied. However, if the
sources are dissimilar, this principle is no longer applicable and the fields-of the
sources must be added at each angle ¢ for which the total field is calculated.
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Thus, for two dissimilar sources 1 and 2 situated on the x axis with source 1 at
the origin and the sources separated by a distance 4 (same geometry as Fig. 4-6)
the total field is in general

E=E, + E; = E,./Lf($) + aF($) cos y1* + [aF($} sin ¢]°
/1,($) + arctan [aF(¢) sin y/(f(9) + aF(§) cos ¥)] (1)

where the field from source 1 is taken as

Ey = Eo f(&) [ /{¢) 2)
and from source 2 as
E;, = aEyF(@) /F(¢) + d, cos ¢ + ] 3)
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Figare 4-15 Relation of 2 nonisotropic dissimilar sources (o
coordinate sysient.

where E; = constant

a = ratio of maximmum amplitude of source 2 to source I (0 < a < 1)
¢ =d, cos ¢ + 8 — f($) + F (), where
& = relative phase of source 2 with respect to source 1

f(¢) = relative field pattern of source 1

fA#) = phase pattern of source 1

F() = relative field pattern of source 2

F ¢) = phase pattern of source 2

:In (1} the phase angle (2} is referred to the phase of the field from source 1 in

some reference direction {¢ = ¢,).
In the special case where the field patierns are identical but the phase pat-
terns are not, g = 1, and

f(#) = F(¢) @

from which
E=2E, [§) cos & f1,6) + 912 ©)

where phase is again referred to source 1 in 5ome reference direction ¢,.
. As an illustration of nonisotropic, dissimilar point sources, let us consider
an example in which the field from source 1 is given by

E, = cos ¢ [0 (6)
and from source 2 by

E,=siné ¥ | o

where y =d, cos ¢ + 6

The relation of the two sources to the coordinate system and the individual field
patterns is shown in Fig, 4-15. Source 1 is located at the origin. The total field E
is then the vector sum of E, and E;, or

E=cos ¢ +sing fip (8)

Let us consider the case for i/4 spacing (d = 1/4) and phase quadrature of the
sources (8 = n/2). Then

=3 (os ¢+ 1) ©

The calculation for this case is easily carried out by graphical vector addition.
The resulting ficld pattern for the total field E of the array is presented in Fig.
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Figure 4-16 Field pawern of
array of 2 nonisotropic dissimilar
sources of Fig 4-15 for d = /4
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Figure 417 Phase pattern of array having field pattern of Fig. 4-16. The phase angle £ is with
respect to source | as phase center.

4-16, and the resulting phase pattern for the angle ¢ is givén in Fig. 4-17. The
angle ¢ is the phase angle between the total field and the field of source 1 in the
direction ¢ = 0.

4-6 LINEAR ARRAYS OF n ISOTROPIC POINT SOURCES OF
EQUAL AMPLITUDE AND SPACING.!

4-6a Introduction. Let us now proceed to the case of n isotropic point sources
of equal amplitude and spacing arranged as a linear array, as indicated in Fig,

' 5. A. Schelkunoff, Electromagnetic Waves, Van Nostrand, New York, 1943, p. 342.
1. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941, p. 451
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d "'* Figare 4-18 Arrangement of linear array
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5 " ol n isotropic point sources.

4-18, where n is any positive integer. The total field E at a large distance in the
direction ¢ is given by

E=1+e¥ +e 424 . 4 /71 (1)

where ¢ is the total phase difference of the fields from adjacent sources as given
by

2nd

b=—cosd+d=dcosd+3 {2)

where § is the phase difference of adjacent sources, i.e., source 2 with respect (o 1,
3 with respect to 2, etc.

The amplitudes of the fields from the sources are all equal and taken as
unity. Source 1 (Fig. 4-18) is the phase reference. Thus, at a distant point in the
direction ¢ the field from source 2 is advanced in phase with respect to source 1
by , the field from source 3 is advanced in phase with respect to source 1 by 2,
etc.

Equation (1) is a geometric series. Each term represents a phasor, and the
amplitude of the total field E and its phase angle ¢ can be obtained by phasor
{vector) addition as in Fig. 4-19. Analytically, E can be expressed in a simple
trigonometric form which we now develop as follows:

Multiply (1) by ¢, giving

Ee™ < o 4 2V 4 & 4 - 4 IV 3
Now subtract {3) from (1) and divide by 1 — e, yielding

1— ™

R — @

Equation (4) may be rewritten as

E- plimwil (eﬁ'\h’l _ e“iﬂ*ﬂ)

T g2\ G2 _ g2

(5)
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{a}

6]

Figure 419 {2) Vector addition of ficlds at a large distance from the linear array of 5 isotropic point
sources of equal amplitude with source 1 as the phase center (reference for phase). (b) Same, but with
midpoini of array (source 3) as phase center.

from which

_ e sin(mp2) sin (nf/2)
E=e W ~ sno &

(6

where £ is referred to the field from source 1. The value of { is given by

{= ¥ 7
1f the phase is referred to the centerpoint of the array, (6) becomes

_ sin (/) ®

sin (/2)

In this case the phase pattern is a step function as given by the sign of (8). The

phase of the field is constant wherever E has a value but changes sign when E
goes through zero. _

When i =0, (6} or (8) is indeterminate so that for this-case E must be

obtained as the limit of (8} as  approaches zero. Thus, for ¥ = 0 we have the
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Figure 4.20 Universal field-pattern chart for arrays of various numbers a of isotropic point sources
of equat amplitude and spacing,

relation that
E=n {8a)

This is the maximum valtue that E can attain. Hence, the normalized value of the
total field for E_, = n is

1 sin {ny/2)
r sin ({/2}

The field as given by (9) will be referred to as the “array factor.” Values of the
array factor as obtained from (9) for various numbers of sources are presented in
Fig. 4-20. I  is known as a function of ¢, then the field pattern can be obtained
directly from Fig. 4-20,

We may conclude from the above discussion that the field from the array
will be a maximum in any direction ¢ for which y = 0. Stated in another way,
the fields from the sources all arrive at a distant point in the same phase when
¥ = 0. In special cases, » may not be zero for any value of ¢, and in this case the
field is usually a maximum at the minimum value of .

" To illustrate some of the properties of linear arrays (9) will now be applied
to several special cases. See BASIC programs in App. B for calculating patterns
involving these different cases. See also Probs. 4-35 and 4-40.

E= %)

4-6b Case 1. Broadside Array (Sources in Phase). The first case is a linear
array of n isotcepic sources of the same amplitude and phase. Therefore, 4 = 0
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and
W =d, cos ¢ (10)

To make y = 0 requires that ¢ = (2k + 1}n/2), where k = 0, 1. 2, 3, .... The field
is, therefore, a maximum when

and — {10a)

That is, the maximum field is in 2 direction normal to the array. Hence, this
condition, which is characterized by in-phase sources (6 = 0), results in a
“ broadside ” type of array.

As an example, the pattern of a broadside array of four in-phase isotropic
point sources of equal amplitude is shown in Fig. 4-21a. The spacing between
sources is i/2.' The field pattern in rectangular coordinates and the phasc pat-
terns for this array are presented in Fig. 4-21b.

4-6¢ Case 2. Ordinary End-Fire Array. Let us now find the phase angle
between adjacent sources that is required to make the field a maximum in the
direction of the array (¢ = 0). An array of this type may be called an “end-fire”
array. For this we substitute the conditions ¢ = 0 and ¢ = 0 into (2), from which

= -4, (11)

Hence, for an end-fire array, the phase between sources is retarded progressively
by the same amount as the spacing between sources in radians. Thus, if the
spacing is 4/4, source 2 in Fig 4-18 should lag source 1 by %0°, source 3 should
lag source 2 by 90°, etc.

As an example, the field pattern of an end-fire array of four isotropic point
sources is presented in Fig 4-222. The spacing between sources is 1/2 and
0 = —=. The field pattern in rectangular coordinates and the phase patterns are
shown in Fig. 4-22b. The same shape of field pattern is obtained in this case if
8 = +m since, with d = /2, the pattern is bidirectional. However, if the spacing is
less than A/2, the maximum radiation is in the direction ¢ = 0 when 6 = —d. and
in the direction ¢ = 180° when § = +d,.

4-6d Case 3. End-Fire Array with Increased Directivity. The situation dis-
cussed in Case 2, namely, for § = —d,, produces & maximum field in the direc-
tion ¢ =0 but does not give the maximum directivity. It has been shown by

' If the spacing between elements exceeds 4, sidelobes appear which arc equal in amplitude to the
main {center) lobe. These are called grating Jobes (see Sec. 11-26).
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Figure 4-21 (a) Field pattern of broadside array of 4 isotropic point sources of the same amplitude
and phase. The spacing between sources is i/2. (b) Field pattern in rectangular coordinates and phase
Pﬂnfl‘l_ls of same array with phase center at midpoint and at source 1. The reference direction [or
phase is at ¢ = 90°,

Hansen and Woodyard' that a larger directivity is obtained by increasing the
phase change between sources so that

R
o= —(d,+;) (12)

This condition will be referred to as the condition for “increased directivity.”

, .
W. W.Hansen and J. R. Woodyard, “A New Principle in Directional Antenna Design,” Proc. IRE,
26, 333345, March 1938.
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Thus for the phase difference of the ficlds at a large distance we have

¥ = dfcos ¢ — 1) —’—; (13)

As an example, the field pattern of an end-fire array of four isotropic point
sources for this case is illustrated in Fig. 4-23. The spacing between sources is 4/2,
and therefore & = —(5n/4). Hence, the conditions are the same as for the array
with the pattern of Fig. 4-22, except that the phase difference between sources 15
increased by /4. Comparing the field patterns of Figs. 4-22¢ and 4-23, it is
apparent that the additional phase difference yiclds a considerably sharper main

180°

{a)

Array F—-’I‘—N—&J d= i

d d 2
1
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Figure 4-22 (a) Field pattern of ordinary end-fire array of 4 isotropic point sources of same ampli-
tude. Spacing is 4/2 and the phase angle § = —n. (b) Field pattern in rectangwiar coordinates and
phase patterns of same array with phasc center at midpoint and at source 1. The reference direction
for phase is at ¢ = 0.
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90°

180° o
Figure 4-23 Ficld pattern of end-fire
d array of 4 isotropic point sources of
‘ﬂi'r_'i____ equal amplitude spaced i/2 apart. The
12 3 4 phasing is adjusted for increased direc-
Array tivity (6 = — 2n),

lobe in the direction ¢ = 0. However, the back lobes in this case are excessively
large because the large value of spacing results in too great a range in .

To realize the directivity increase afforded by the additional phase differ-
ence requires that || be restricted in its range to a value of n/n at ¢ =0 and a
value in the vicinity of n at ¢ = 180°. This can be fulfilled if the spacing is
reduced. For example, the field pattern of an end-fire array of 10 isotropic point
sources of equal amplitude and spaced i/4 apart is presented in Fig. 4-244 for the
phase condition giving increased directivity (§ = —0.6r). In contrast to this
pattern, one is presented in Fig. 4-24b for the identical antenna with the phasing
of an ordinary end-fire array (5 = —0.5z). Both patierns are plotted to the same

)
Array
123456878910

Bkl T T

=
ddd | ==
d4

Figure 4-24 Field patterns of end-fire arrays of
10 isotropic point sources of equal amplitude
spaced A/4 apart. The pattern at (g} has the
phase  adjusted for increased - directivily
(6 = —0.6n), while the pattern at (¥ has the
phasing eof an ordinary end-Bre  aray
5 (8 = —0.5%).
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Table 4-1
Ordinary end.fire End-fire array with
array increased directivity
Beam width between half-power peints 69° g
Beam width between first nulls 1067 747
Directivity 11 19

maximum. The increased directivity is apparent from the greater sharpness of the
upper pattern. Integrating the pattern, including the minor lobes, the directivity
of the upper pattern is found to be about 19 and of the lower pattern about 11.
The beam widths and directivities for the two patterns are compared in
Table 4-1.

The maximum of the field pattern of Fig. 4-24a occurs at ¢ =0 and

ty = —n/n. In general, any increased directivity end-fire array, with maximum
at ¢ = —n/n, has 2 normalized field pattern given by
. f ® sin (mf/2)

E=sin{— )= 14

s (Zn) sin (/2) (14)

46e Case 4. Array with Maximum Field in an Arbitrary Direction.
Scanning Array. Let us consider the case of an array with a field pattern having
a maximum in some arbitrary direction ¢, not equal to kn/2 where k=0, 1, 2 or
3. Then {2) becomes

O=d, cos ¢, + 8 (15}

By specifying the spacing d,, the required phase difference & is then determined
by (13). Conversely, by changing & the beam direction ¢, can be shifted or
scanned.

As an example, suppose that n =4, d = 1/2 and that we wish to have a
maximum field in the direction of ¢ = 60°. Then § = —=/2, yielding the field
pattern shown in Fig. 4-25.

4-7 NULL DIRECTIONS FOR ARRAYS OF n ISOTROPIC
POINT SOURCES OF EQUAL AMPLITUDE AND SPACING. In
this section simple methods are discussed for finding the directions of the pattern
nulls of the arrays considered in Sec. 4-6.

Following the procedure given by Schelkunoff,! the null directions for an
array of n isotropic point sources of equal amplitude and spacing occur when

! 8. A. Schelkunofl, Eleciromagretic Waves, Van Nostrand, New York, 1943, p. M3
5. A. Schelkunoff, “A Mathematical Theory of Arrays,” Bell System Tech. J, 22, 80-107, January
1943,
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Figare 425 Field pattern of array

of 4 isotropic point sources of equal
amplitude with phasing adjusted to
give the maximum at ¢ = 60°. The
spacing 15 4,2,

E = 0 or, provided that the denominator of (4-6-4) is not zero, when

o = 1
Equation {1) requires that
npy = +2K=n
where K =1,2,3,...

(1)

(2)

Equating the value of y in {2) to its value in (4-6-2) gives

2K

U =d cos o+ 8=+ = o)

Thus,

2Kr
o = arccos iT -

1
_ 4
a) d'] @

where ¢, gives the direction of the pattern nulls. Note that values of K must be
excluded for which K = mn, where m = 1, 2,3, ... Thus, if K = mn, {2) reduces to
¥ = + 2mr and the denominator of (4-6-4) equais zero so that the null condition
of (1), that the numerator of (4-6-4) be zero, is insufficient.

In a broadside array & = 0, so that for this case (4) becomes

2Kn Ki
- - i 5
o = arccos (+ ndr)—arccos(%-nd) 3

As an example, the field pattern of Fig. 4-21 (n = 4, d = 4/2, & = 0) has the

null directions

o = arccos ( +

K) (6)
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For K =1, ¢y = +60° and +120° and for K = 2, ¢, = 0" and 180°. These are
the six null directions for this array.

If ¢, in (3} is replaced by its compiementary angle y, (see Fig. 4-18), then (5)
becomes

Ki
To = ar¢sin (i—) 7}
nd
If the array is long, so that nd » K/,
Ka
Yo + — 8
JoX T nd (8

The first nulls either side of the maximum occur for K = 1. These angles will be
designated v,,. Thus,

g

H+

A
- 9
Yoi nd 9
and the total beam width of the main lobe between first nulls for a long broadside
array is then

24

- (10)

Zjgr ™
For the field pattern in Fig. 4-21 this width is exactly 60°, while as given by (10) it
is | rad, or 57.3°. This pattern is for an array 24 long. The agreement would be
better with longer arrays.

Turning next to end-fire arrays, the condition for an ordinary end-fire array
is that 8 = —d,. Thus, for this case (3) becomes

2Kn
—] = 4 11
cos ¢ nd (1n
from which we obtain
¢ . Kr
Po _ 4 [RZ (12)
3 arcsin ”)

or ¢ = 2 arcsin (i }—2!%%) (13)

As an example, the field pattern of Fig. 4-22 (n=4,d = 4/2, § = —n) has
the null directions

¢y = 2 arcsin (i %) (14)

For K =1,¢,= +60°;for K =2, ¢ = £90° etc,
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I the array is long, so that nd » K/, (13) becomes

o =~ + /& {15)
nd

The first nulls either side of the main lobe occur for K = 1. These angles will be

designated ¢,,. Thus, _
24
$or =~ & & (16)

and the total beam width of the main lobe between first nuils Sor a lony ordinary
end-fire array is then

2i
209, ~ —
S22 [— (a7

For the field patiern in Fig. 4-22 this width is exactly 120°, while as given by (17)
itis 2 rad, or 115°,

For end-fire arrays with increased directivity as proposed by Hansen and
Woodyard, the condition is that & = —(d, + =/n). Thus, for this case (3} becomes

d/cos 4’0—1)—§= iz% {18)
from which
% = arcsin [i 2—:}: (2K — I}:I (19)
. )
or ¢o = 2 arcsin I: 3N ey (2K — ])] 20

If the array is long, so that nd » KJ, (20) becomes

A
o>t [ZQK-1) @n

The first mulls cither side of the main lobe, ¢y, occur for K = 1. Thus,

A
bor ~ % nd 22)

and the t_ota] beam width of the main lobe between first nulls for a long end-fire
array with increased directivity is then

A
265, =2 & 23)
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This width is 1 ,fﬁ, or 71 percent, of the width of the ordinary end-fire array. As
an example, the ordinary end-fire array pattern of Fig. 4-24b has a beam width
between first nulls of 106°. The width of the pattern in Fig. 4-24a for the array
with increased directivity is 74°, or 70 percent as much. _

Table 4-2 lists the formulas for null directions and beam widths for the
different arrays considered above. The nult directions in column 2 apply to arrays
of any length. The formulas in the third and fourth columns are approximate and
apply only to long arrays. _

The formulas in Table 4.2 have been used to calculate the curves presented
in Fig. 4-26. These curves show the beam width between first nulls as a function
of nd, for three types of arrays: broadside, ordinary end-fire and end-fire with
increased directivity. The quantity nd, {=nd/}) is approximately equal to the
length of the array in wavelengths for long arrays. The exact value of the array
length is (n — 1)d;. .

The beam width of long broadside arrays is inversely proportional to the
array length, whereas the beam width of long end-fire types is inversely pro-
portional to the square root of the array length. Hence, the beam width in the
plane of a long linear broadside array is much smaller than for end-fire types of
the same length as shown by Fig. 4-26. It should be noted, however, that the
broadside array has a disc-shaped pattern with a narrow beam width in a plane

Table 4-2 Null directions and beam widths between first nulls for linear arrays of
n isotropic point sources of equal amplitude and spacing.

{For n = 2. The angles in columns 3 and 4 are expressed in radians. To convert to degrees, multiply
by 57.3)

Beam: width
: between first
Type of Null directions Naull directions nulls
array (array any length) (long array) (long array)
+2K 1
General &, = arccos [( TAR 6) _]
case n d,

. . K4y - Ki 21
Broadside To = ATCSIN i. ol o=+ ] gy > wd
Ordinary i K .
end-fire $p = 2 arcsin (i "2""‘&) =1 — 2poy =2

. o
Er:e:;:dmm b = 2 arcsin [i \/ﬁ (2K — 1)] do= £
directivity
(Hansen and
Waoodyard)

[

[

A
SRR

2K-1) iy, =2 {—

&




150 + ARRAYS OF POINT 50URCES

b3
[=]
<

150° \
100°* \

y \ Ordinary end-fire

\ End-fire with

TTTT

Beam width between first nulls (BWFN)

50 increased directivity
[ . \ Ny H\
- /:' T ==~ Figwe 426 Beam width between
o roadsid first nulls as a lunction of nd,; for
1 2 5 10 20 60 100 2(Ta¥s of n isotropic point scurces
y of equal amplitude. For long
iy arrays, nd, is approximately equal
{approx. array length} to the array length.

through the array axis but a circular pattern (360" beam width) in the plane

normal to the array axis. On the other hand, the end-fire array has a cigars.

shaped pattern with the same beam width in all planes through the array axis.

48 BROADSIDE VERSUS END-FIRE ARRAYS. TURNS
VERSUS DIPOLES AND 3-DIMENSIONAL ARRAYS. Assuming
that the half-power beam width (HPBW) is 4 the beam width between first nulls
{BWFN) (an approximation), we have from (2-9-4} and (4-7-10) that the direc-
tivity of a linear broadside array is given approximately by

4n 4:rmd "
Oup ¢ur mi TH M

D~

where n = number of sources
d = spacing between sources, m
4 = wavelength, m
L, =nd{i = L/} = length of array in wavelengths, dimensionless

The pattern is disc-shaped so @ = 360°, or 2n radians. It is assumed that
¢up = BWFN/2 = i/nd; also that L, » 1 so that L =~ nd.
From (4-7-17), the directivity of an ordinary end-fire array is apprommately

nd
D"_"4f.'.‘—:-!—-i=2nf_1 ()
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while from (4-7-23) the directivity of an end-fire array with increased directivity is
approximately

nd
D = dn — = dnL, 3)

A general expression for directivity, as given by (2-22-9), is

4nA,
= G

A

D=

where A, = effective aperture, m*

For a square unidirectional broadside array or aperture with 100 percent
aperture efficiency (uniform apercture distribution) we have

A,=4,=0 (@)
and
D =4nl? ()

For 100 percent aperture efficiency (uniform aperture distribution) the
directivity of a circular unidirectional broadside array or aperture is

D = r2d} )
where d; = d/4 = diameter of array or aperture in wavelengths, dimensionless

These directivity relations are summarized in Table 4-3, which also gives
half-power beam widths and numerical directivities for array lengths (or
diameters) of 1 to 1000 as measured in wavelengths.

For array dimensions of the order of A, the increased directivity end-fire
array and square broadside array have comparabie directivities. We note,
however, that the end-fire directivity is proportional to the length L, while the
directivity of the broadside square array is proportionai to the square of the side
length Il,. Hence, for a high directivity an end-fire array must have a much
greater dimension than a square broadside array. For example, a square array
with 10004 on a side has a directivity (see Table 4-3) of 12.6 million. To equal this
directivity an increased-directivity end-fire array must be 1 million 4 long and an
ordinary end-fire array 2 million A long. Even if all the sources or elements of
such a long end-fire array could be fed with equal amplitude and in proper phase,
the great length of the array is a severe disadvantage. Thus, it is apparent why
broadside arrays or apertures are invariably used for high-directivity (high-gain)
applications. The broadside aperture may consist of an array of 4/2 dipoles or it
may be the aperture of a parabolic reflector antenna with single feed point or, as
discussed next, a broadside array of intermediate-length end-fire antennas.

With uniform amplitude of all /2 dipole elements across a large aperture
(and dipole spacing no more than 4/2), there is nothing to be gained by replacing
each A/2 dipole by a more directional end-fire antenna. However, if each end-fire
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Table 4-3 Directivities and beamwidths of arrays and aperturest

Directivity for L; or d, equal to
Array Drirectivity Half-power
(or aperture)f formala 1 10 100 1000 beam widths

Linear 24, 2 p. | 200 2000 50.8°
broadside array of
length L,
Ordinary 2xL, 6.3 63 630 6300 108°
eng-fire array of \/E

length L, :

Increased-directivity 4nl, 126 126 1260 12600 52¢

end-fire array of \/1-_1

length L,

Square 4L} 126 1260 126000 126 x 107  S08° 50.8°
broadside aperture L, X L,
with side length L;

Circulat nd; 99 990 99000 99 x 10° 58°
broadside aperture d;

with diameter d;

Flat ayray (length L) =L, /8L,;

of ordinary end-fire

antennas (length L,

Satne but square n./8L] 8.9 281 8900 281000
(Lur = L1)§

Flat array {fength L., 4L, /L

of increased-directivity

end-fire antennas

(length L, ¢

Same but square an, /L3 126 198 12600 398000
(L= L)%

d

+ The directivities Jor the arrays (broadside and end-fire) are approaimaic white for the apertures {square and
circulary the directivitics are exact. Note that if the directivity of the square or circular aperture is calculaled using
the approximation 41 00087 ¢4 Lhe result is Jarger than the directivity given in the 1able. See discussion regarding
this approximation in connection with (3-13-16} and {3-13-1K).

Arrays or apertures are assumed to be large compared to Lhe waveiength and to have uniform amplitude
distribution. Specifically, the square and circular aperturcs arc assurved to have E00 percent aperture efficiency. See
text fér other assumptions involved. .

 The directivities for the square and circular aperiures are identical in form to the more general exact relation
given by (4), which applies 1o an aperiure of any shape.
} L, = array length, wavelengths
d, = artay dianeter, wavelengths
L,z = ordinary end-fire array length, wavelengths
L,y = increased-directivity end-fire array length, wavelengths
§ Beam off edge, not perpendicuar 1o fiar side.
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antenna is wsed to replace several A/2 dipoles then some benefits may accrue as
described in the following example involving a broadside array of end-fire
antennas. An array of this type may be called a volume or 3-dimensional array.
Figure 4-27a is an edge view of a 12 x 12 broadside array of 144 point
sources with A/2 spacing. The figure shows 12 clements as seen from one edge.
Let each source consist of a 4/2 dipole element as suggested in partial broadside
view in Fig. 4-27e. The array. of Fig. 4-27a is bidirectional but if backed at i/4
spacing by an identical array fed with equal amplitude currents and 90° phase
difference, each pair of dipoles has a unidirectional pattern (as in Fig, 4-5) and

Array pattern

r(a]..?ar .O. » N . - - - .

Dipole pattern 12x12 =144 dipoles

Array pattern
- *}\ . Q . - 0 . . . - *
2] - ¥E 'pa';r'paue.rn . » . - . -
12%12x 2 =288 dipoles
Broadside L,

0
2 ] 13 - - - » 0 » - - - * -
i
:i{‘.] Reflector or ground plane 12 < 12=144
he) dingles with reflector
wn
L - [ ]
9-turn
* helix * *
- L] -
Nenasi . . |Ena-fire
nd-fire 3
@array 0 . . »
: pattern Array : :
@ . pattern, . .

“Ground plane 50 g coay. feed 4% 4=16 helices

2\ 3
p— g e A —
|
# { LMZH . | I Partial front
v L ZBAT AT 13, orbroadside
t ¢ A2 | 2 view
(e) ) % 4 |
L L B VR Lt
9 af2 ffective aperture
dipoles  of A/2 dipole with
reflector

Figwre 427 Equivalence of broadside array of 4/2 dipoies and 3-dimensional broadside-end-fire
array. Parts o, b, ¢ and d arc edge or side views whilc ¢ is & front or broadside view.
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the entire 12 x 12 x 2 array is unidirectional as supgested in Fig. 4-27b. An alter-
native, simpler arrangement is to replace the second array with a conducting
flat-sheet reflector or ground plane at an appropriate spacing, as in Fig. 4-27c.

A 1/2 dipole has a directivity D = 1.64, and taking the directivity of dipole
with reflector as twicé this value or 3.28 (=2 x 1.64), the equivalent effective
aperture is

pi* 328 , 2 :
AT T 0.264 6]
or approximately A%/4, as suggested in Fig. 4-27e.

The 12 x }2 array has 144 feed points. By substituting an end-fire array of
appropriate directivity and effective aperture for a group of 4/2 dipole elements,
the number of elements and feed points can be reduced. Thus, let us replace 9 4/2
dipoles by a single end-fire array. The 9 /2 elements have an effective aperture of

3 2
A~ (5) 2= % A2 = 22512 (8

For an increased-directivity end-fire array to provide an effective aperture
of 2.2512 requires an array directivity

4nA
’;2 £ = 4 x 225 = 283 (9)

Direquired) =

The required length of the increased-directivity end-fire array is then

D(required)d  4m x 2.254
4n - 4

Lirequired} = = 2254 {10

An effective end-fire array which meets the above requirements is a 9-turn
monofilar axial-mode helical antenna (see Chap. 7) with i/n diameter and 1/4
spacing between turns making the length L =9 x 0.254 = 2251, This end-fire
antenna has the remarkable properties of increased directivity, wide bandwidth
(over 2 to 1) and very small mutual coupling between adjacent helices. It is fed
from one end .through the ground plane by a coaxial transmission line {as in
Fig, 4-27d) which may be 50 Q or other convenient impedance.

With each 9-turn helix replacing 9 1/2 dipoles the broadside array of 144
4/2 dipoles is replaced by 16 (= 144/9) helices which reduces the complexity of the
feed system and provides an array readily capable of wide bandwidth operation.

The effective aperture of the array is 64 x 64 = 364% for a directivity

D = 4xn x 36 = 452 (or 26.6 dBi) (11)

As a further step, the 16 S-turn helices could be replaced by 4 36-source
end-fire arrays (36-turn helices), and as a final step, the 4 helices by a single
144-source end-fire array {144-turn helix} 364 long. Such a long helix is not prac-
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tical but, even if it were, its great length is a disadvantage as compared to a more
compact array with a number of shorter helices.

n the above example each turn of a helix (as an end-fire source) has a
directivity equal to a 4/2 dipole with reflector (as a broadside source), but polariz-
ations differ (helix circularly polarized and dipole linearly polarized). In
suminary, we considered the following cases:

1. 12 x 12 array of reflector-backed /2 dipoles: 12 % 12 = 144 sources
2. 4 x 4 array of 9-turn helical end-fire antennas: 4 x 4 x 9 = 144 sources
3, 2 x 2 array of 36-turn helical end-fire antennas: 2 x 2 x 36 = 144 sources
4. Single 144-turn helical end-fire antenna: 1 x 144 = 144 sources

Thus, for constant directivity and effective aperture, the number of sources
is a constant whether the sources are arranged in a flat broadside array or in
3.dimensional broadside-end-fire configurations, all sources having uniform
amplitude. Although the constant directivity and effective aperture in the above
example may not apply fully for all 3-dimensional arrays, the example illustrates
the principle that for a given number of sources, various configurations may
produce (ideally) similar, if not identical, directivities and effective apertures.

Another broadside-end-fire combination is a flat (or planar) array consisting
of a linear array with only a single row of end-fire antennas (helices) as in Fig.
4-27d (no other arrays stacked perpendicular to the page}. The beam width in one
plane is determined by the broadside length L, and the beam width in the other .
plane by the end-fire length L,p (for ordinary end-fire) or length L, {for
increased directivity),

The directivity for the ordinary end-fire case is

D{ordinary) = =L, /8L (12)
and if L, = L,z (square flat array),
D(ordinary) = n\_/S—Lg {13)
The directivity for the increased directivity case is
Dincreased directivity) = 4nL, /L g (14)
and if L, = L (square flat array),
Dlincreased directivity) = 4n\/f.§ (13)

These relations are summarized in Table 4-3.

An early application of end-fire antennas in a large 3-dimensional array,
which I designed and built in 1951, is shown in Fig. 7-4. It has 96 helices of 11
turns each in a 4 x 24 configuration. Equivalent to an array of 1056
(=11 x 96}4/2 dipoles with reflectors, it has a wide bandwidth {(over 2 to 1) and is
simple to feed.
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49 DIRECTIONS OF MAXIMA FOR ARRAYS OF =n
ISOTROPIC POINT SOQURCES OF EQUAL AMPLITUDE AND
SPACING. Let us now proceed to a discussion of the methods for locating the
positions of the pattern maxima, The major-lobe maximum usually occurs when
¥ = 0. This is the case for the broadside or ordinary end-fire array. The main
lobes of the broadside array are then at ¢ = %0° and 270°, while for the ordinary
end-fire array the main lobe is at 0° or 180° or both. For the end-fire array with
increased directivity the main-lobe maximum occurs at a vatue of ¢ = +a/r with
the main lobe at 0° or 180°. Referring to Fig. 4-24a, the main-lobe maximum (first
maximum) for this case occurs at the first maximum of the numerator of (4-6-8).

The maxima of the minor lobes are situated between the first- and highet-
order nulls. It has been pointed out by Schelkunoff that these maxima occur
approximately whenever the numerator of {(4-6-8) is a maximum, i.c., when

.oy
sin = 1 _ (9l

Referring to Fig. 4-28, we note that the numetator of (4-6-8) varies as a function
of y more rapidly than the denominator sin (/2). This is especially true when n
is large. Thus, although. the nulls occur exactly where sin (mf/2) = 0, the maxima
occur approximately where sin {(mj/2) = 1. This condition requires that

my n
5 = i(2K+l]5 (2)

where K = 1,2, 3,...
Substituting the value of § from {2) into (4-6-2) gives

¢cm¢_+5=$9§§lk 3)

Therefore

pn— P ST @

n
where ¢, = direction of the minor-lobe maxima
Yor a broadside array, 3 = 0 so that (4) becomes

+(2K + i
nd )

As an example, the field pattern of Fig. 4-21 (n=4, d = 4/2,  =0) has the
minor-lobe maxima at

w = ArCCos

¢, = arccos L’i.’-ﬂ 6

For K =1, ¢, = 141.4%and +138.6°. These are the approximate directions for
the maxima of the four minor lobes of this pattern.
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For an ordinary end-fire array, é = —d, so that (4) becomes
+(2K + )i
¢, = arccos | ————— 4 | 7
i 7
while, for an end-fire array with increased directivity, é = —{d, + n/n) and
A
¢, = arccos Ind (12K + 1] +1 (8)

The above formulas for the approximate location of the minor-lobe maxima
are listed in Table 4-4 (K = I for first minor lobe, K = 2 for second minor lobe,
etc.).

The amplitudes of the field at the minor-lobe maxima are also of interest. It
has been shown by Schelkunofl that since the numerator of (4-6-9) is approx-
imately unity at the maximum of a minor lobe, the relative amplitude of a minor-
lobe maximum E,,; is given by

, 1
e ) ©)
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Table 4-4 Directions of minor-lobe maxima for linear arrays of
1 isotropic point sources of equal amplitude and spacing

Type of array Directions of minor-lobe maxima
+{2K + 1 1
Genéral ¢ = arccos - & d_,
. +2K + A
Broadside ¢, = arcces Snd
+{2K + 14
Ordinary end-fire ¢, = ATCCOS T 41

End-fire with increased directivity

A
{Hansen and Woodyard}) Py = AICCOS {m [L+EK+ D]+ l}

Introducing the value of i from (2} into (9) yields
1
B> " TRK + Dr/n)
When n » K, that is, for the first few minor lobes of an array of a large number
of sources, we have the further approximation

2
Ew =~ Gk + n

(10)

{11}

Thus, for arrays of a large number of sources the relative amplitude of the
first few minor lobes is given by (11) for K =1, 2, 3, etc. In a broadside or
ordinary end-fire array, the major-lobe maximum is unity so that the relative
amplitudes of the maximum and first five minor lobes for arrays of these types
and many sources are 1, 0.21, 0.13, 0.09, 0.07 and 0.06. From the curve forn =20
in Fig. 4-20 we have the corresponding relative amplitudes given by 1, 0.22, 0.13,
0.09. 0.07 and 0.06. For an end-firc array with increased directivity the maximum
for ¢ = 0 and n = 20 occurs at = 1/20 = 9°. At this value of yr the array factor
is 0.63. Putting the maximum equal to unity then makes the relative amplitudes
1,0.35, 0.21, 0.14, 0.11 and 0.09. It is interesting to note in (10) that the maximum
amplitude of the smallest minor lobe occurs for 2K + 1 = n. Then

K+1
sin [L———z )"] =1 (12
n
1 .
and Eg =~ - (13

The condition 2K + | = n is exactly fulfilled when n is odd for the minor-tobe
maximum at ¢ = 180° (see Fig. 4-20). When # is even, the condition is approx-
imately fulfiled by the minor lobes nearest ¥ = 180°. Thus, the maximum ampli-
tude of the smallest minor lobe of the field pattern of any array of n isotropic
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point sources of equal amplitude and spacing will never be less than 1/n of the
major-lobe maximum. An exception fo this is where the range of { ends after a
null in the array factor has been passed but before the next maximum has been
reached. In this case the maximum of the smallest minor lobe may be arbitrarily
small.

410 LINEAR BROADSIDE ARRAYS WITH NONUNIFORM
AMPLITUDE DISTRIBUTIONS. GENERAL CONSIDERATIONS,
In the preceding section, our discussion was limited to linear arrays of n isotropic

_sources of equal amplitude. This discussion will now be extended to the more

general case where the amplitude distribution may be nonuniform. In introducing
this subject, it is instructive to compare field patterns of four types of amplitude
distributions, namely, uniform, binomial, edge and optimum. To be specific, let us
consider a linear array of five isotropic point sources with A/2 spacing. If the
sources are in phase and all equal in amplitude, we may calculate the pattern as
discussed in Sec. 4-6, the result being as shown in Fig. 4-29 by the pattern desig-
nated uniform. A uniform distribution yields the maximum directivity. The
pattern has a half-power beam width of 23°, but the minor lobes are relatively
large. The amplitude of the first minor lobe is 24 percent of the major-lobe
maximum {see Fig. 4-20, n = 5). In some applications this minor-lobe amplitude
may be undesirably large.

To reduce the sidelobe leve! of linear in-phase broadside arrays, John Stone
Stone! proposed that the sources have amplitudes proportional to the coefficients
of a binomial series of the form

{"__.-M JRUSE /S SN
2t

where n is the number of sources. Thus, for arrays of three to six sources the

relative amplitudes are given by

fa+h '=ag"t+(n—1Ja" b+ (1

n Relative amplitudes
(Pascal’s triangle)

3 1 2 1
4 1 3 3t
5 14 6 41
) 15101051

where the amplitudes are arranged as in Pascal's triangle (any-inside number is
equal to the sum of the adjacent numbers in the row above).

Applying the binomial distribution to the array of five sources spaced //2
apart, the sources have the relative amplitudes 1, 4, 6, 4, 1. The resulting pattern,

! John Stone Stone, U.S. Patents 1,643,323 and 1,715433.
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f’igm 429 Normaiized field patterns of broadside arrays of 5 isotropic point sources spaced /2
apart. All SOUFCES Are in the same phase, but the relative amplitudes have four different distributions:
uniferm, binomial, optimum and cdge. Only the upper half of the pattern is shown. The relative
amplitudes of the 5 sources are indicated in cach casc by the array below the pattern, the height of the
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des:gl}aled binomial, is shown in Fig. 4-29. Methods of calculating such patterns
are discussed in the next section. The pattern has no minor lobes, but this has
been achieved at the expense of an increased beam wiuth (31°). For spacings of
’1{ 2 Or less between elements, the minor lobes are eliminated by Stone’s binomial
dlStl‘l!:rution. However, the increased beam width and the large ratio of current
amplitudes required in large arrays are disadvantages.
distr :t ‘the f)ther_extreme from the binomial distribution, we might try an edge
the 1t ution in which only t_he cfld sources of the array are supplied with power,
of th ree.eent.ra] sources being erthm: omitted or inactive. The relative amplitudes
¢ five-source array are, accordingly, 1, 0, 0, 0, 1. The array has, therefore,
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degenerated to two sources 24 apart and has the field pattern designated as edge
in Fig. 4-29. The beam width between half-power points of the “main” lobe
(normal to the array) is 15°, but “minor”™ lobes are the same amplitude as the
“main” lobe,

Comparing the binomial and edge distributions for the five-source array
with /2 spacing, we have

Halif-power Minor-lobe amplitade
Type of distribution beam width {2t of major lobe)

Binomial 31* 1]
Edge 15° 100

Although for most applications it would be desirable to combine the 15°
beam width of the edge distribution with the zere minor-lobe level of the bino-
mial distribution, this combination is not possible. However, if the distribution is
between the binomial and the edge type, a compromise between the beam width
and the sidelobe level can be made; ie., the sidelobe level will not be zero, but the
beam width will be less than for the binomiai distribution. An amplitude distribu-
tion of this nature for linear in-phase broadside arrays has been proposed by
Dolph! which has the further property of optimizing the relation between beam
width and sidelobe level: ie., if the sidelobe level is specified, the beam width
between first nulls is minimized, or, conversely, if the beam width between first
nulls is specified, the sidelobe level is minimized. Dolph’s distribution is based on
the properties of the Tchebyscheff polynomials and accordingly will be referred
to as the Dolph-Tchebyscheff or optimum distribution.

Applying the Dolph-Tchebyscheff distribution to our array of five sources
with 1/2 spacing, Jet us specify a sidelob¢ level 20 dB below the main lobe, ie,a
minor-lobe amplitude 10 percent of the main lobe. The relative amplitude dis-
tribution for this sidelobe level is 1, 1.6, 1.9, 1.6, 1 and yields the pattern desig-
nated optimum in Fig. 4-29. Methods of calculating the distributton and pattern
are discussed in the next section. The beam width between half-power points is
27°, which is less than for the binomial distribution. Smaller beam widths can be
obtained only by raising the sidelobe level. The Dolph-Tchebyscheff distribution
includes ail distributions between the binomial and the edge. In fact, the binomial
and edge distributions are special cases of the Dolph-Tchebyscheff distribution,
the binomial distribution corresponding to an infinite ratio between main- and
sidelobe levels and the edge distribution to a ratio of unity. The uniform distribu-
tion is, however, not a special case of the Dolph-Tchebyscheff distribution.

1 ¢, L. Dolph, “A Current Distribution for Broadside Arrays Which Optimizes the Relationship
between Beam Width and Side-Lobe Level,” Proc. IRE, 34, no. 6, 135-348, June 1946,
H. §. Riblet, “ Discussion on Dolph's Paper,” Proc. IRE, 35, no. 5, 489492, May 1947
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Referring to Fig. 4-29, we may draw a number of general conclusions
regarding the refation between patterns and amplitude distributions. We note
that if the amplitude tapers to a small value at the edge of the array (binomial
distribution), minor lobes can be eliminated. On the other hand, if the distribu-
tion has an inverse taper with maximum amplitude at the edges and none at the
center of the array (edge distribution), the minor lobes are accentuated, being in
fact equal to the “main” lobe. From this we may quite properly conclude that
the minor-lobe level is closely refated to the abruptness with which the amplitude
distribution ends at the edge of the array. An abrupt discontinuity in the distribu-
tion results in large minor lobes, while a gradually tapered distribution approach-
ing zero at the edge minimizes the discontinuity and the minor lobe amplitude.
In the next section, we shall see that the abrupt discontinuity produces large
higher “harmonic” terms in the Fourier series representing the pattern. On the
other hand, these higher harmonic terms are small when the distribution tapers
gradually to a small value at the edge. There is an analogy between this situation
and the Fourier analysis of wave shapes. Thus, a square wave has relatively large
higher harmonics, whereas a pure sine wave has none, the square wave being
analogous to the uniform array distribution while the pure sin¢ wave is analo-
gous to the binomial distribution.

The preceding discussion has been concerned with arrays of discrete sources
separated by finite distances, However, the general conclusions concerning ampli-
tude distributions which we have drawn can be extended to large arrays of con-
tinuous distributions of an infinite number of point sources, such as might exist
in the case of a continuous current distribution on a metal sheet or in the case of
a continuous field distribution across the mouth of an electromagnetic horn. If
the amplitude distribution follows a Gaussian error curve, which is similar to a
binomial distribution for discrete sources, then minor lobes are absent but the
beam width is relatively large. An increase of amplitude at the edge reduces the
beam width but results in minor lobes, as we have seen. Thus, in the case of a
high-gain paraboiic refiector type of antenna, the illumination of the reflector by
the primary antenna is usually arranged to taper toward the edge of the parab-
ola. However, a compromise is generally made between beam width and side-
lobe level so that the illumination is not zero at the edge but has an appreciable
value as in a Dolph-Tchebyscheff distribution.

4-11 LINEAR ARRAYS WITH NONUNIFORM AMPLITUDE
DISTRIBUTIONS. THE DOLPH-TCHEBYSCHEFF OPTIMUM
DISTRIBUTION. In this section kinear in-phase arrays with nonuniform
amplitude distributions are analyzed, and the development and application of the
Dolph-Tchebyscheff distribution are discussed.

Let us consider a linear array of an evén number n, of isotropic point
sources of uniform spacing 4 arranged as in Fig. 4-30a. All sources are in the
same phase. The direction 8 = 0 is taken normal to the array with the origin at
the center of the array as shown. The individual sources have the amplitudes 4;,

411 LINEAR ARRAYS WITH NONUNIFORM AMPLITUDE DiSTRIBUTIONs 163

f-0
Even
4 @
—— ~ - l-—d—-i R N
A, Ay A, A, Ay A, As A
6=0
b
Odd ®)
8
[
o - - > - -

Ay Ay, A, A, 24, A, A, A; A

Figure 430 Linear broadside arrays of r isotropic sources with uniform spacing for n even (a) and n
odd {b).

A,, A,, etc., as indicated, the amplitude distribution being symmetrical about the
center of the array. The total field E,_ from the even number of sources at a large
distance in a direction 8 is then the sum of the fields of the symmetrical pairs of
sources, or

E"!=2A0ms%+2Alcos§2£+---+2A,oos("‘2_1w) (n
where W= % sin @ =d, sin @ 2)

Each term in (1} represents the field due to a symmetrically disposed pair of the
SOUICEs.

Now let
2k+1)=n,
wherek =10,1,2,3,...50 that
n—1 2k+1
2 2
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Then (1) becomes

k=N-1
E.=2 Y A, cos (2"“;9) 3)
k=0 2

where N = 1,/2

Next let us consider the case of a linear array of an odd number r, of
isotropic point sources of uniform spacing arranged as in Fig. 4-30b. The ampli-
tude distribution is symmetrical about the center source. The amplitude of the
center source is taken as 24, the next as 4, the next as 4,, etc. The total fieid
E,, from the odd number of sources at a large distance in a direction 4 is then

—1
E, =2A;+ 24, cos iy + 24, cos 2¢ + - + 24, cos (H"T u‘:) 4

Now for this case let
2k+1=n,
where k = 0, 1, 2, 3, .... Then (4) becomes

k=N 'f’ .
E, =2% 4, cos (Zk —) (5)
k=101 2

where N = {n, — 1)/2

The series expressed by (4} or by (5) may be recognized as a finite Fourier
series of N terms.! For k=0 we have a constant term 2A, representing the
contribution of the center source. For k = 1 we have the term 24, cos y rep-
resenting the contribution of the first pair of sources on either side of the center
source. For each higher value of k we have a higher harmonic term which in each
case represents the contribution of a pair of symmetrically disposed sources.
Thus, the total field pattern is simply the sum of a series of terms of increasing
order in the same way that the waveform of an alternating current can be rep-
resented as a Fourier series involving, in general, a constant term, a fundamental
term and higher harmonic terms. The field pattern of an even number of sources
as given by (1) or (3) is also a finite Fourier series but one which has no constant
term and only odd harmonics. The coefficients Ay, 4,, ... in both series are
arbitrary and express the amplitude distribution.

To iliustrate the Fourier nature of the field-pattern expression, let us con-
sider the simple example of an array of 9 isotropic point sources spaced /2
apart, having the same amplitude and phase. Hence, the coefficients are related as
follows: 24, = A, = A; = A; = A, = 4. The number of sources is odd; hence
the expression for the field pattern is then given by (5) as

Eg =14 + cos  + cos 2y + cos 3y + cos 4 6

! Irving Wolff, * Detcrmination of the Radiating System Which Will Produce a Specified Directional
Characteristic,” Proc. [RE, 25, 630643, May 1937.
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Figure 4-31 Resolution of total pattern ol array of 9 isotropic sources into Fourier components due
to center source and pairs of symmetrically disposed sources. The relative field pattern of the entire
array is shown by (f). The lower halves of patterns are not shown. (Note that the end-fire lobes are
wider than the broadside lobes.)

The first term (k = 0) is a constant so that the field pattern is a circle of amplitude
1 as shown in Fig. 4-31a. The second term (k = 1) may be regarded as the funda-
mental term of the Fourier series and gives the pattern of the two sources (4, in
Fig. 4-30b) on either side of the center. This pattern has 4 lobes of maximum
amplitude of unity, as illustrated in Fig. 4-31b. The next term (k = 2) may be
regarded as the second harmonic term and gives the pattern of the next pair of
sources (A, in Fig. 4-30b). This pattern has 8 lobes as shown by Fig. 4-31¢. The
last two terms represent the third and fourth harmonics, and the patterns have 12
and 16 lobes, respectively, as indicated by Fig. 4-314 and e. The above relations
may be summarized as in Table 4-5.

The algebraic sum of the patterns given by the five terms is the total far-
field pattern of the array which is presented in Fig. 4-31f. If the middle source of
the array has zero amplitude or is omitted, the total pattern is then the sum of
the four terms for which k = 1, 2, 3 and 4. If in addition the pair of sources A4, is
omitted, the total pattern is the sum of three terms for which k = 2, 3 and 4.
Since these are higher harmonic terms, we may properly expect that in this case
the minor lobes of the total pattern will be accentuated. It is apparent from the
above discussion that the field pattern of any symmetrical amplitude distribution
can be expresed as a series of the form of (3) or (5).

Table 4-5

k Sources Spacing Fourier term Pattern
0 1 0 Constant Circle

1 2 14 Fundamental 4 lobes
2 2 21 Second hammornic 8 lobes
k| 2 kY] Third harmonic 12 lobes
4 2 44 Fourth harmonic 16 lobes
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Proceeding now te the Dolph-Tchebyscheff amplitude distribution, it will
be shown that the coefficients of the pattern series' can be uniquely determined
so as to produce a pattern of minimum beam width for a specified sidelobe level.
The first step in the development of the Delph-Tchebyscheff distribution is to
show that (3) and (5) can be regarded as polynomials of degree n, — 1 and n, — {,
that is, polynomials of degree equal to the number of sources less 1. In the
present discussion we shall consider only the case of the broadside type of array,
ie., where 5 = 0. Thus,

: . ¢ =d, sin & (7
Now by de Moivre's theorem,
AT AR A
my 12 _ ¥ Y. ¥ ¥
& oosm2+_;smm2 0052+JSII‘I2 (8)
Om taking real parts of (8) we have
v_ Vo BV
cos m — = Re (cos 5 Fising 9
Expanding (9) as a binomial series gives
v_ ¥ _mm—1) 1) ¥ oY
cos m = cos™ 2 T 2 S0’ 5
mm—1m—2m—3) ¥ .
+ a0 cos 5 sin’ o — {16

' Putting sin® (f/2) = 1 — cos® (§//2), and substituting pamcular values of m, (10)
then reduces to the following:

m=0, cosm%=1

m=1, cosm%zms%

m=2, cosm%=2(zos’%—l an
m=3, cosm%=4cos’—'§~—3cos%’

m=4, cosm%—ﬁcosg 8cos’%+1

! Equations (1}, (3}, (4) and (3).
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Now let
X = Cos —

whereupon the equations of (11) become

(12)

cosm%=l, when m =0
¥ _ -
cos m - = X, whenm=1
2 f (13)
cosm%:sz—l, when m = 2
ete.

The polynomials of (13) are called Tchebyscheff polynomials, which may be

designated in general by

Tix)=cosm ﬂ

(14)

2
For particular values of m, the first eight Tchebyscheff polynomials are
Tix} =1
Ti(x})=x
Ty(x) = 2x* — 1

Tylx) = 4x> — 3x

To(x) = 8x* — 8x? + 1

Ty(x) = 16x* — 20x> + 5x

Tolx) = 32x5 — 48x* + 18x2 1

Tolx) = 64x” — 112x* + 56x> — Tx

) (15)

We note in (15) that the degree of the polynomial is the same as the value of m.

The roots of the polynomials oceur when cos m(i/2) =

m_'i’_ 3 13
2 (2k 1).2
wherek=1,2,3,...

The roots of x, designated x’, are thus

X' = cos [(Zk -1 %]

0 or when

(16)

(17)
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Yoix}

Figure 432 Tchebyschefl polynomials of degree m = ¢ through m = 5.

We have shown that cos m{y/2) can be expressed as a polynomial of degree
m. Thus, (3) and (5) are expressible as polynomials of degree 2k + 1 and 2k
respectively, since each is the sum of cosine polynomials of the form cos m{y/2).
For an even numbeér n, of scurces 2k + 1 = n, — 1, while for an odd number n,,
2k = n, — 1. Therefore, (3) and (5), which express the field pattern of a symmetric
in-phase equispaced linear array of n isotropic point sources, are polynomials of
degree equal to the number of sources less 1. If we now set the array polynomial
as given by (3) or {5} equal to the Tchebyscheff polynomial of like degree
{m = n — 1) and equate the array coefficients to the coefficients of the Tchebys-
chefl polynomial, then the amplitude distribution given by these coefficients is a
Tchebyscheff distribution and the field pattern of the array corresponds to the
Tchebyscheff polynomial of degree n — 1.

The Tchebyscheff polynomials of degree m = 0 through m = 5 are presented
in Fig. 4-32. Referring to Fig. 4-32; the following properties of the polynomials
are worthy of note:

1. All pass through the point (1, 1).
2. For values of x in the range —1 < x < + 1, the polynomials all lie between

ordinate values of +1 and —1. All roots occcur between —1 < x < +1, and
all maximum values in this range are + 1.

We may now describe Dolph's method of applying the Tchebyscheff poly-
nomial 1o obtain an optimum pattern. Suppose that we have an array of 6
sources. The field pattern is then a polynomial of degree 5. If this polynomial is
equated to the Tchebyscheff polynomial of degree 5, shown in Fig, 4-33, then the
optimum pattern may be derived as follows. Let the ratio of the main-lobe
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Figure 433 Tchebyscheff polynemial of filth degree with relation to coordinate scales.
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maximum to the minor-lobe level be specified as R; that is,

main-lobe maximum
sidelobe level

The point (x,, R} on the Ti(x) polynomial ¢urve then corresponds to the main-
lobe maximum, while the minor lobes are confined to 2 maximum value of unity.
The roots of the polynemial correspond to the nulls of the field pattern. The
important property of the Tchebyscheff polynomial is that if the ratio R is speci-
Jied, the beam width to rhe first null (x = x\) is minimized. The corollary also holds
that if the beam width is specified, the ratic R is maximized (sideiobe level
minimized).

The procedure will now be summarized. Let us write (3) and (5) again. Tt is
to be noted that they are functions of y¢/2. Thus,

k=N-1 w
E.=2 3 A, cos [(Zk +1) —] {n even) (18)
k=0 2
k=N w
and E, =23 A,cos (2k 5) {n odd) (19)
k=0

Since we are usually interested only in the relative field pattern, the factor 2
before the summation sign in (18) and (19) may be dropped.

For an array of n sources, the first step is to select the Tchebyscheff poly-
nomial of the same degree as the array polynomial, (3) or (3). This is given by

Th-alx) (20)
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where # is the number of sources and m = n'— 1. Next we choose R and solve
Tdxp) =R (21)

for x,. Referring to Fig. 4-33, we note that, for R > [, x, is also greater than
unity. This presents a difficulty since, according to (12}, x must be restricted to
the range — 1 < x < + 1. If, however, a change of scale is made by introducing a
new abscissa w (Fig. 4-33), where

W=— (22)
Xo

then the restriction of (12} can be fulfilled by putting

w = cos % @3

where now the range of w is restricted to —! < w < + 1. The pattern polynomial,
(18) or (19), may now be expressed as a polynomial in w, The final step is to
equate the Tchebyscheff polynomial of (20) and the array pelynomial obtained by
substituting {23) into {18) or {19). Thus,

T_1(x} = E, (24)

The coefficients of the array polynomial are then obtained from (24), yielding the
Dolph-Tchebyscheff amplitude distribution which is an optimum for the side-
lobe level specified.

As a proof of the optimum property of the Tchebyscheff polynomial, let us
consider any other polynomial P(x) of degree 5 which passes through (x,, R) in
Fig. 4-33 and the highest root x] and for all smaller values of x lies between +1
and — L. If the range in ordinate of P(x) is less than +1, then this polynomial
would give a smaller sidelobe level for this same beam width, and Ty{x} would
not be optimum. Since P(x) lies between +1 in the range —x| < x < +x) it
must intersect the curve Ty(x) in at least m + 1 = 6 points, including (x,, R). Two
polynomials of the same degree m which intersect in m + 1 points must be the
same polynomial,’ so that :

P(x} = Titx)

and the T(x) polynomial is, therefore, the optimum.

If the spacing between sources exceeds 4/2, it should be noted that as the
spacing approaches 4 a large lobe develops at & = +90° which equals the main
lobe when 4 = 4. However, if the individual sources of the array are nonisotropic,
ie., are directional with the maximum at & = 0 and with little or no radiation

! This follows from the fact that a polynomial of degree m has m + 1 arbitrary constanus. Further, if
m+ | points on the polynomial's curve are specified, m + 1 independent equations with m + 1
wnknowns can be wriiten and the m + 1 constants thereby determined.
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at & = +90°, then by pattern multiplication the lobes of the total pattern at
# = +90" can be made small,

4-12 EXAMPLE OF DOLPH-TCHEBYSCHEFF DISTRIBUTION
FOR AN ARRAY OF 8 SOQURCES. To illustrate the method for finding
the Dolph-Tchebyscheff distribution, let us work the following problem,

An array of n = 8 in-phase isotropic sources, spaced /2 apart, is to have a
sidelobe level 26 dB befow the main-lebe maximum. Find the amplitude distribu-
tion fulfilling this requirement that produces the minimum beam width between
first nulls, and plot the field pattern.

Since

Sidelobe level in dB below main-lobe maximum = 20 log,, R (1)
it follows that
R=20 )
The Tchebyscheff pelynomial of degree n — 1 is T;{(x). Thus, we set
To{xo) = 20 (3}

The value of x, may be determined by trial and error from the To{x) expansion as
given in (4-11-15) or x, may be calculated from

xo = 4[R + /RT — )™ + (R — /R* — 1)1m] (4)
Substituting R = 20 and m = 7 in (4) yields
Xp =115 (5
Now substituting (4-11-23) in (4-11-18) and dropping the factor 2, we have
Eg = Agw + A, (4w — 3w) + A,(16w° — 20w + 5w)
+ A5(64wT — 112w + 56w — Tw) . 6)

But w = x/x,, so making this substitution in (6) and grouping terms of like :
degree,

644, , 164, — 1124, o 44, — 204, + 564, ,

R % xt
L Ao =34, + 54y~ T4; @
Xg
The Tchebyscheff polynomial of like degree is
Tolx) = 64x7 — 112x> + 56x° — Tx (8)

Now equating (7) and (8),
Ey = TH{x) 9
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For (9) to be true requires that the coefficients of (7) equal the coefficients of the
terms of like degree in {8). Therefore,

Y (10)
Xo
or Ay = xg = 1.157 = 2.66 {11}
In a similar way we find that
A, =456 '
A, =682, 12)
A, =825 i

The relative amplitudes of the 8 sources are then
1, 1.7,26,3.1,3.1,26, 1.7, 1

To obtain the field pattern given by the Dolph-Tchebyscheff distribution,
we recall that /2 = (d, sin 8)/2, cos ({/2) = w, and w = x/x,, [rom which
d, sin @

2

X = Xp COS {13}
L he value of x corresponding to a given value of 8, as obtained from (13), is then
introduced in the appropriate Tchebyscheff polynomial, in this case Tii{x), or
scaled from a graph of this polynomial, as shown in Fig. 4-34. The value of the
polynomial for this value of x is then the relative field strength in the direction 8.
In general, as 8 ranges from —#/2 to +x/2, the variables /2, w and x range as
indicated by Table 4-6. Thus, in general, as 8 ranges from — /2 to 0 to +m/2, x
ranges from some point, such as a in Fig. 4.34, to x, and back again to a, the
crdinate value giving the relative field intensity.

In our preblem, d, = n and x4 = 1.15, so that the range of x is as shown in
Table 4-7. Hence, at § = —90° we start at the origin in Fig. 4-34 (point b), and as

‘_ 11

Tix} .
-+ 3 Ta point
{1.15,20)

*
¢
®
g_.b-_-_ ——_————e

Figwre &3 Tchebyscheil poly-
1al of the seventh degree.
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Table 4-6
Variable Range
n .4
R [¢] + -
8 2 2
d
i — g’. 0 4+ =
2 2 2
d, 4,
w Ccos — 1 oS —
2
dr d{
x Xg COS E Xp Xp COS 3

@ approaches 0 we proceed to the right along the polynomial curve, reaching the
point {xq, R = 1.15, 201 when 8 = 0°. As 6 continues to increase, we retrace the
polynomial curve, reaching the origin when 8 = 90°, Thus, the pattern is sym- .
metrical about the 8 = 0° direction. :

As a preliminary step to ploiting the field pattern, it s usually helpful 10
make a plot of x versus 0 from {13). Then, knowing the values of x for the nulls
and maxima of the T,(x) curve, the corresponding values of & may be determined.
As many intermediate points as are needed may also be obtained in the same -
manner. Following this procedure, the field pattern for our problem of the
B-source array is presented in Fig 4-35a in rectangular coordinates and in
Fig. 4-15b in polar coordinates.

4-13 COMPARISON OF AMPLITUDE DISTRIBUTIONS FOR
8-SOURCE ARRAYS. In the problem worked in the preceding section, the
sidelobe level was 26 dB below the maximum of the main beam (R = 20). It is of
interest to compare the amplitude for this case with the distributions for other
sidelobe levels. This is done in Fig. 4-36, in which the relative amplitude distribu-
tions are shown for 8-source arrays with sidelobe levels ranging from O dB to an
tnfinite number of decibels below the main beam maximum,. The infinite decibel
case corresponds to R = o¢ (zero sidelobe level) and is identical with Stone’s
binomial distribution. The relative amplitudes for this case are 1, 7, 21, 35, 35, 21,

Table 4-7
¥Yarizhle Range

x 1
8 — 5 \] + E
x 0 1.5 0




174 4 ARRAYS GF PDINT SOURCES
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Figore 4-35 Relative field pattern of broadside
artay of 8 isotropic sources spaced 472 apart. The
amplitude distribution gives a minimum beam width
®) for a sidelobe level # of the main lobe. The pattern
is shown in rectangular coordinates al (@) and in

. polar at {(¥). Both diagrams show the palters only
e m e E . from —9%0% 1o +907, the other half of the pattern

Arcay being identical.

7, 1) The ratio of amplitudes of the center sources to the edge sowrces is 35 to 1.
Such a large ratio would be very difficult to achieve in practice. As the sidelobe
level increases (R decreases), the amplitude distribution becomes more uniform,
the ratio of the center to edge amplitudes being only about 3 to 1 for the 26-dB
(R = 20) case. The 20-dB case (R = 10) is more uniform, with an amplitude ratio
of only 1.7 to 1. The 14-dB case {R = 5) exhibits a still more uniform distribution
but shows an inversion, the maximum amplitude having shifted to the outermost
sources {1 and 8). The uniform distribution is not a special case of the Dolph-
Tchebyscheff distribution, an inversion occurring before the uniform case is
reached. As the sidelobe level is raised still further, the distribution tends more
towards an edge type, the amplitude of the inner sources decreasing still further.
In the extreme case, where the sidelobes are equal to the main-lobe level {0 dB, or
R = 1}, the amplitudes of all of the inner sources are zero, and the distribution is
of the edge type discussed in connection with Fig. 4-29d. Thus, both the binomial
and edge distributions are special cases of the Dolph-Tchebyscheff distribution,
but the uniform amplitude distribution is not. The point of nearest approach to
the uniform distribution is for an R value between 5 and 10. Referring to Fig.
4-20 and interpolating for n = 8 between the curves for n =10 and n =35, it is
interesting to note that the ratio of the main-lobe maximum to the minor-lobe

' As may be noted by extending Pascal's triangle {Sec. 4-10) 10 # = 8.
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maxima ranges from about 4.3 to 8 for an array of eight sources of uniform
amplitude.

The Dolph-Tchebyscheff optimum amplitude distribution, as discussed in
the preceding sections, is optimum only if = 4/2, which covers the cases of most
interest for broadside arrays. By a generalization of the method, however, cases
with smaller spacings can also be optimized.!

In conclusion, it should be pointed out that the properties of the Tchebys-
cheff polynomials may be applied not only to antenna patterns as discussed
above but also to other situations. It is necessary, however, that the function to
be optimized be expressible as a pelynomial.

4-14 CONTINUQUS ARRAYS. In the preceding sections, the discussion
has been restricted to arrays of discrete point sources, ie., to arrays of a finite
number of sources separated by finite distances. We now proceed to a consider-
ation of continuous arrays of point sources, ie., arrays of an infinite number of
sources separated by infinitesimal distances. By Huygens™ principle, a continuous
array of point sources is equivalent to a continuous ficld distribution. In this way,
our discussion of continuous arrays can be extended to include the radiation
patterns of field distributions across apertures, as, for example, the pattern of an
electromagnetic horn where the field distribution across the mouth of the horn is
known.

1 H{. 1. Riblet, Proc. IRE, 35, no. 5, 489492, May 1547
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Figore 4-37  Continuous broadside array of point sources of length a.

We shall now develop an expression for the far field of a continuous array
of point sources of uniform amplitude and of the same phase. Let the array of
length a be parallel to the y axis with its center at the origin as indicated in
Fig. 4-37. Then the field 4E at a distant point in the direction 8 due to the point
sources in the infinitesimal length dy at a distance y from the origin is

dE = .."_1_ elole—rijot dy = i gl —pry) dy (1)
51 LS

where § = w/c = 2n/ and A is a constant involving amplitude. The total field E

at the distant point is then the integrated value of (1) over the array of length a as

given by
afl A
E‘—-.[ — pf—dnt gy 2)
—az T

Both 4 and the time factor may be taken outside the integral, and r, may also be
ifr, » a. Thus,

ajz
E= A e~ gy 3
Fi ~ai2
However, referring to Fig. 4-37,
r.=r—ysin# 4)

Substituting (4) in (3) and taking the constant factor e~ #* outside the integral, we
have

afd .
E=a J‘ Hris g )
—uy2
— )
where a A ©

Fy
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Integrating (5) yields
E 21‘!’ ej(ﬂa.n’lj ¢in8 __ e-—j(ﬂa}!]sinﬂ 7]
" Bsin @ 2 (

which may be written as

24’
E= Bsin b sin (Ez—a sin 9) (8}
Let
¥ = flasin 8 = a_sin g [v)]
where a, = fa = 2na/l = array length, rad
Then
24
= = 10
B sin ¢ s 2 (10)
However, from (9),
me¥
B sin 6 =
so that (10) becomes
n (0
E=ad ﬂ% (an
Normalizing (11) gives finally
sin (/2
g8 'p(;.jf; ) (12

Equation (12) expresses the far field, or Fraunhofer diffraction paitern, of a
continuous broadside array of length a having uniform amplitude and phase, For
r discrete, equally spaced sources, it was previously shown by (4-6-9) that the
normalized value of the total field is

_ sin (mjr/2)
" nsin (§/2) (13)
wherey =dcosp + 5

For in-phase sources, 6 = 0. Comparing Figs. 4-18 and 4-37 we note that
¢ =8+ /2, so that

= —d, sin @ = —fBd sin 0 (14)
For small values of , which occur for small values of 8, 4 or both, {13} can be
expressed as
_ sin (ny:/2)  sin [(Brd/2) sin 6]
T omg2 (Bndf2)sin @

(15)
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The length g of the array of discrete sources is
a=dn—1) (16)

where n = number of sources
d = spacing

Ifn3 1, a ~ nd and (15) becomes
_ sin [(Ba/2) sin 8] _ sin [(a,/2) sin &]

= = 17
E {Ba/2) sin B {a,/2)sin 8 {an
where a, = fla = 2rafi
By (9) this can now be expressed as
sin (/2
E=—2~ (18)
W2

which is identical with the value obtained in (12) for the continuous array. Thus,
the field pattern for an array of many discrete sources (n > 1) and for small values
of ¥ is the same as the pattern of a continuous array of the same length. If the
array is long, that is, if nd » A, the main beam and the first minor lobes are
confined to small values of 8. It therefore follows that the main features of the
pattern of a large array are the same, whether the array has many discrete
sources or is a continuous distribution of sources. Many of the conclusions
derived in previous sections concerning amplitude distributions for arrays of dis-
crete sources can also be applied to continuous arrays provided that the arrays
are large.
The null directions &, of the continuous array pattern are given by

v = +Knr (19
2 .
where K =1,2,3,...
Thus,
Ki
v = Arcsin (i 7) 20

For a long array (20) can be expressed as

573K
a,

By~ + af (rad) = + (deg) 21)
&

where a, = afl

The beam width between first nulls (K = 1) for a long array is then

115
2, = 2 (rad) ~ L2 (deg) (22)
a, @,
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1
2 power level

a=5a

- i 1
15° 10° 5"

k i 1
07 87 10° 15 Figre 4-38 Main-lobe field patlerns of continuous
8 uniform broadside arrays 3, {0 and 504 long.

It is to be noted that (20), (21} and (22} are identical with the expressions given for
the broadside array of discrete sources, if nd is replaced by a (see Table 4-2,
Sec. 4-7). Therefore, the null locations for long arrays of either discrete or contin-
uous sources are the same provided only that n » 1,

The field patterns of the main beam of continnous arrays of point sources 5,
10 and 504 long are compared in Fig. 4-38. It may be noted that the beam width
between half-power points, Oy, of a long,. uniform broadside array is given
approximately by

0.9
Pp =096,, = — (rad) {23)
a;.
51
or Byp = —  (deg) (24)
a;

4-15 HUYGENS' PRINCIPLE.' The principle proposed by Christian
Huygens (1629-1695) has been of fundamental importance to the development of
wave theory. Huygens’ principle states that each point on a primary wave front can
be considered to be a new source of a secondary spherical wave and that a second-
ary wave front can be constructed as the envelope of these secondary waves, as
suggested in Fig. 4-39, Thus, a spherical wave from a single point source propa-
gates as a spherical wave as indicated in Fig. 4-39a, while an infinite plane wave
continues as a plane wave as suggested in Fig. 4-39b. This principle of physical
optics can be used to explain the apparent bending of electromagnetic waves
around obstacles, ie, the diffraction of waves, a diffracted ray being one that
follows a path that cannot be interpreted as either reflection or refraction.

' C. Huygens, Traité de lg Lumiére, Leyden, 1690,

Mazx Born, Optik, Springer-Verlag, 1933.

Amold Sommerfeld, “ Theorie der Beugung,” in Frank and von Mises (eds.), Differential und Inte-
gralgleichungen der Mechanik und Physik, Vieweg, 1935
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Plane wave Fignre 439 Spherical and plane wave fronts with
front secondary waves of Huygens.

Let us consider the situation shown in Fig. 4-40a in which an infinite plane
electromagnetic wave is incident on an infinite flat sheet which is opaque to the
waves. The sheet has a slot of width @ and of infinite length in the direction
normal to the page. The field everywhere to the right of the sheet is the result of
the section of the wave that passes through the siot. If 2 is many wavelengths, the
field distribution across the slot may be assumed, in the first approximation, to
be uniform, as shown in Fig. 4-40b. By Huygens® principle the field everywhere to

TJ’

¥
—
— a
i 7
/Sheet
E—
Plane Helative amplitude
wave

{@) : *)
Figuwre 440 Plane wave incident on opague sheet with slot of width a.
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the right of the sheet is the same as though each point in the plane of the slot is
the source of a new spherical wave. Each of these point sources is of equal ampli-
tude and phase. Thus, by Huygens' principle the slotted sheet with a uniform field
across the opening can be replaced by a continuous array of point sources which
just fills the opening. The field pattern in the xy plane (Fig. 4-40a) is then calcu-
lated in the same way as for a continuous linear array of point sources of length a
orniented parallel to the y axis.

The far field, or Fraunhofer diffraction pattern, of such an array was shown
in the preceding section to be given by

g i W2 1)
W'i2
where ¥ = (2ra/A) sin 0 and where ¢ is in the xy plane (Fig. 4-37). This pattern,
in the xy plane, is independent of the extent of the array in the z direction
{normal to the page). :
} In deriving (1), that is, {4-14-12) of Sec. 4-14, the totai field at a point was
obtained by integrating the contributions from a continuous array of sources
distributed over a length a. For points at a great distance from the array the
integral can be simplified, and the integration is straightforward, as demonstrated
in the preceding section. For points near to the array, however, the integral does.
not simplify in this way but can be reduced to the form of Fresnel's integrals. The
field variation near the stot as obtained in this way is commonly called a Fresnel
diffraction pattern. Along a straight line parallel to the slot and a short distance
from it, the field variation is as suggested at (a) in Fig. 4-41, the variation approx-
imating the uniform distribution of field at the slot as shown in Fig. 4-40b. As the
distance x from the slot is increased, the Fresnel patterns change through a series
of transitional forms, such as suggested at (b) in Fig. 4-41, until at large distances
we enter the Fraunhofer region and the pattern assumes a form as suggested by
i) in Fig. 4-41. Ordinarily the Fraunhofer pattern is obtained by rotating the slot
around its center so that the field is observed at a constant radius rather than at
a constant distance x. The resulting field pattern in polar coordinates is then as
suggested at {d) in Fig. 4-41. Once we have entered the Fraunhofer region, this
pattern is the same at all greater distances. For a point to be in the Fraunhofer
region, it must be at a sufficient distance from the slot so that we can make the
assumption that lines extending from the edges of the slot to the point are paral-
lel. This is commonly assumed to be the case when the point is at a distance r
from the slot given by
2
re2e @
i

where a is the width or aperture of the slot, which is assumed to be large. Thus,
the larger the aperture or the shorter the wavelength, the greater must be the
distance at which the pattern is measured if we wish to avoid the effects of
Fresnel diffraction. This is discussed further in Sec. 18-3a.
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Figare 441 Fresnel and Fraunhofer patterns of a slot of width a.

A nearly uniform type of field distribution across an aperture such as dis-
cussed above in connection with Figs. 4-40 and 4-41 occurs in optics when a
beam of light is incident on a slit. It alsc may be realized by the field distribution
across the mouth of a long electromagnetic horn antenna as in Fig. 4-42a_ Since
the pattern of a uniform field distribution is the same as the pattern of a uniform
distribution of point sources of equal extent, another form of antenna equivalent
to the optical slit or electromagnetic horn is a uniform curren: sheet. This can be
approximatcd by a “billboard” type of array, as in Fig. 4-42b, having many
dipole antennas carrying equal currents. The expressions which have been devel-
oped can thus be applied to a calculation of the Fraunhofer diffraction pattern of
an optical slit or the far field of a horn or uniform current sheet. If the field or
current distribution across the slit or antenna aperture is not uniform, the form
factor for the distribution will appear in the integral for the field expression. If the
aperture is large, the relations developed for amplitude distributions of arrays of
discrete sources can be applied to the case of continuous arrays of sources.
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Figure 4-42 Electromagnetic horn antenna and
array of dipoles with reflector.

Huygens’ principle is not without its limitations. Thus, it neglects the vector
nature of the electromagnetic field. It also neglects the effect of currents which
flow at the edge of the slot, as in Figs. 4-40 and 4-41, or at the edge of the horn,
as in Fig. 4-42a. However, if the aperture is sufficiently large and we confine our
attention to directions roughly normal to aperture, the scalar theory of Huygens’
principle gives satisfactory results.

4-16 HUYGENS' PRINCIPLE APPLIED TO THE DIFFRAC-
TION OF A PLANE WAVE INCIDENT ON A FLAT SHEET.
PHYSICAL OPTICS. Consider s uniform plane wave incident on a perfectly
conducting half-plane, as in Fig. 4-43a." We want to calculate the electric field at
point P at a distance r behind the plane. By Huygens’ principle,

E=J. dE oy

X aniy

where dE is the electric field at P due to a point source at a distance x from the
origin, as in Fig. 4-43b. Thus,

dE = & g~ ipr+d gy (2)

r

1). D. Kraus, Radio Astronomy, 2nd ed., Cygnus-Quasar Books, 1986.
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Figure 443 Piane wave incident from above onto a conducting half-plane with resultant power-
density variation beiow the plane as obtained by physical optics.

so that
Eo i (™ ins
E=Te o) i gy 3}
If ¢ < #, it follows that ’
xZ
a = 4
2r @

When we let 2/rd = k? and kx = u, (3) becomes

E= —i:—: g~ AT J. e i dy (5)
ka
which can be rewritten as
Eo i |7 - peurp2 M
E=-i‘—e” e U gy — | eI gy {6)
r 0 LY
The integrals in (6} have the form of Fresnel integrals so (6) can be written
Ey _, . .
E="2 e #{} + 4 — [Clka) + jS(ha)]) M
ka 1[1{2
where Clka) = J. cos —- du = Fresnel cosine integral (8)
]
ke qu
Stka) = J sin EN du = Fresnel sine integral 1))
4]

/2
where ka = H a, dimensionless.
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Figure 444 Commu spiral show-
ing Cika) and S{ka) as a function of
ka values along the spiral. For
example, when ka:= 1.0, Clka)=
0780 and Sika) = 0.338. When
ka = oc, Clka) = Sikay = L.

A graph of C(ka) and S{ka) yields the Cornu spiral (Fig. 4-44). Since
C{—ka) = — Clka) and S(—ka) = — S(ka), the spiral for negative values of ka is in
the third quadrant and is symmetrical with respect to the origin for the spiral in
the first quadrant.

The power density as a function of ka is then

EE*

Sew = = = So#{[} — Ctka)]* + [} — S(kay)*} (Wm™? {10)
T
where So= Zr (W m™?) (11)

The power density variation of (10} as a function of ka (with r, A and k constant)
is shown in Fig. 4-43c. Assuming that the plane wave originates from a distant
source we have

1. For no obscuration, ka = —a and §,, = §,.

2. For source, observer and edge of obscuring plane in line, ka =0 and §,, =
18,.

3. For complete obscuration, ka = + 0 and §,, = 0.

Thus, the power density does not go to zero abruptly as the point of observation
goes from the illuminated side (ka < 0) to the shadow side (ke > (); rather, there
are fluctuations followed by a gradual decrease in power density.

From (10} and (11) the relative power density as a function of ka is

S, (relative) = i,— = [} ~ Clha)]?® + [ — S(ka)]*} (12)
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" The relative power density (12) is equal to 1R?, where R is the distance from
a ka value on the Cornu spiral to the point (4, 4} (see Fig. 4-44). For large posi-
tive values of ka, R approaches 1/nka, so that (12) reduces approximately to

2
S, (relative) = g( ! ) rA 13)

nka!  4nta?

where » = distance from obstacle (conducting half-planej, m
A =-wavelength, m
a = distance into shadow region, m :

Equation (13) gives the relative power density for large ka (>3} (well into the
shadow region). For this condition it is apparent that the power flux density
(Poynting vector) due to diffraction increases with wavelength and with distance
{from edge) but decreases as the square of the distance a into the shadow region.

Example. A vertical conducting wall 25 m high extends above a flat ground plane.
A 4 = 10-cm transmitter is situated 25 m above the ground plane at a large distance
to one side of the vertical wall and a receiver is located on the ground plane 100 m
to the other side of the wall. Find the signal level at the receiver due to diffraction
over the wall as compared to the direct path signal without the wall.

Solution. The constant &k = /2/ri = /2/100 x 0.1 = 044 and Ta=25 m, so
ka = 11 which is greater than 3. Thus, {{3) is applicable and
ri 100 x 0.1 1

§,.(relative) dnlad  4mi = 25% 2500 °

Thus, the vertical wall causes 34 dB of attenuation as compared to a direct path
signal.

If the half-plane in Fig. 4-43 is replaced by a strip of width D and length
» D, diffraction occurs from both edges, scattering radiation into the shadow
region behind the strip. On the centerline of the strip, diffraction fields from both
edges are equal in magnitude and of the same phase since the path lengths from
both edges are equal. Thus, the diffracied field has a maximum or central peak on
the centerline.

If the strip is replaced by a disk of diameter D, there is diffraction around its
entire edge and all diffracted fields arrive in phase on the centerline behind the
disk producing a larger central peak. In optics this peak is called the axial bright
spot. In a similar way, the diffracted fields from the feed system at the focus of a
parabolic dish reflector can produce a back lobe on the axis of the parabola. See
additional discussions on diffraction in Secs. 2-18, 12-2, 13-3, 17-5 and 18-3d.

4-17 RECTANGULAR-AREA BROADSIDE ARRAYS, The method
of obtaining the field patterns of linear arrays discussed in the preceding sections

417 RECTANGULAR-AREA BROADSIDE akkays 187
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Figure 445 Rectangular broadside array of height a and length b with relation to coordinates.

can be easily extended to the case of rectangular broadside arrays, ie., arrays of
sources which occupy a flat area of rectangular shape, as in Fig. 4-45. For such a
rectangular array, the field pattern in the xy plane (as a function of 6) depends
only on the y-dimension a of the array, while the field pattern in the xz plane (as
a function of ¢) depends only on the z-dimension b of the array. The assumption
is made that the field or current distribution across the array in the y direction is
the same for any values of z between +b/2. Likewise, it is assumed that the
amplitude distribution across the array in the z direction is the same for all
values of y between +a/2. Therefore, the field pattern in the xy plane is calcu-
lated as though the array consists only of a single linear array of height a coin-
cident with the y axis (y array). In the same way, the pattern in the xz plane is
obtained by calculating the pattern of a single linear array of length » coincident
with the z axis (z arvay). If the array also has depth in the x direction, i.c., has
end-fire directivity, then the pattern in the xy plane is the product of the patterns
of the single tlinear x and y arrays, while the pattern in the xz plane is the product
of the patterns of the x and z arrays.

If the area occupied by the array is not rectangular in shape, the above
principles do not hold. However, the approximate field patterns may be obtained
in the case of an array of elliptical area, for example, by assuming that it is a
rectangular area as in Fig. 4-46a or in the case of a circular area by assuming
that it is square as in Fig. 4-46b. '

From the field patterns in two planes (xy and xz) of a rectangular array the
beam widths between half-power points can be obtained. If the minor lobes are
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Y : . o o e
""‘—r/ ~— Figure 446  Elliptical array with equiva
lent rectangular array {a) and circular
(a) (b array with equivalent square urray (b).

not large, the directivity D is then given approximately by
41000
HH
where #¢ and ¢} are the half-power beam widths in degrees in the xy and xz
planes respectively. The limitations of (1) are discussed following (3-13-16},
leading to (3-13-18) which includes correction factors.

An expression for the directivity of a large rectangular broadside array of
height @ and width b (Fig. 4-45} and with a uniferm amplitude distribution may
also be derived rigorously as follows. By (3-13-8) the directivity of an antenna is
given by

D=

m

47/ {0; P)max
I 16, @) sin 0 46 d¢
where {(, ¢) is the space power pattern, which varies as the square of the space
field pattern. From (4-14-17) the space field pattern of a large rectangular array is
sin [(a, sin 8)/2] sin [{b, sin $)/2]
{a, sin 8)/2 (b, sin ¢)/2

D=

()

E, ¢} =

(3

where a, = 2na/l
b, = 2xb/A

The main beam maximum is in the direction # = ¢ = 0in Fig. 4-45. In (3,8 =0
at the equator, while in (2}, 8 = 0 at the zenith. For large arrays and relatively
sharp beams we can therefore replace sin 0 and sin ¢ in (3) by the angles, while
sin @ in (2) can be set equal to unity. Assuming that the array is unidirectional
(no field in the — x direction), the integral in the denominator of (2) then becomes

j’ J sin? {nafl/A) sin® (nbo/i)
—x/2 J—xi2 (rab/i)? (=bep/2)*

Making the limits of integration —ac to + oo instead of —=/2 to + /2, (4} may
be evaluated as A2/ab. Therefore, the approximate directivity D of a large uni-
directional rectangular broadside array with a uniform amplitude distribution is

41tab ab
72 =126 e (5}

8 de @)
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As an example, the directivity of a broadside array of height a = 104 and length
b = 204 is, from {35), equal to 2520, or 34 dB.

4-18 ARRAYS WITH MISSING SOURCES AND RANDOM
ARRAYS. A linear array of 5 isotropic point sources with i/2 spacing is dis-
cussed in Sec. 4-10 for several amplitude distributions including uniform, bino-
mial and Dolph-Tchebyscheff. Let us consider this 5-source array again with all
sources of equal amplitude with pattern as in Fig. 4-47a (same as Fig. 4.294) and

L]

et

b}

w}

o

@ Figare 447 Field paterns of linear
atray of 5 isotropic point scurces of
equal amplitude and 4;2 spacing: {a) all
5 sources on, (B) one source {next to the
edge) off, (c) one source (at the center)
ofl and (d) one source {at the edge) off.
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note what happens to the pattern if one of the sources is turned -off (amplitud_c
reduced to zero), If the off source is next to the edge source, the beam width is
-ssentially unchanged but the minor-lobe level is up and nulls are filled as shown
in Fig. 4-47b. When the center source is off, the beam width is reduced but the
minor-lobe level is higher, as indicated in Fig. 4-47c. If an edge source is off, the
array is identical with a uniform array of 4 sources and, as shown in Fig. 4-474,
has a larger beam width with the minor-lobe level slightly higher than for the
uniform source array of Fig. 4-47a. (Compare curves for n = 4 and 5 in Fig. 4-20.)

If the amplitude distribution of the array is tapered (binomial or Dolph-
Tchebyscheff) as in Fig. 4-29b and ¢, turning off a source at the edge will have
less effect than in the uniform-amplitude case.

In an array of a large number of sources, it is of interest to know what
happens if one or more sources are turned off either intentionally or inadvertt?nl-
ly. Also to reduce cost, a designer would like to know how many (and which)
sources can be omitted without appreciably affecting the performance character-
istics. It has been shown by Lo and Maher and Cheng' that if sources are posi-
tioned with random instead of uniform spacing in a large array (L » 4) the
number n of sources can be reduced without affecting the beam width appre-
ciably. The gain, however, is proportional to n and to keep the largest sidelobes
below a certain level, a minimum # is required.

PROBLEMS?

*4-1 Two point sources. .
{a) Show that the relative E{¢) pattern of an array of 2 identical isotropic in-phase
point saurces arranged as in Fig. P4-1 is given by E(¢) = cos [{4,/2) sin ¢],

where d, = 2Znd/i.

Figure P41 Two point sources.

Y. T. Lo, “A Probabilistic Approach to the Design of Large Antenna Arrays,” J[EEE Trans. Ants.
Prop., AP-11, 95-96, 1963,

T. M. Maher and D. K. Cheng, * Random Removal of Radiators from Large Linear Arrays.” fEEE
Trans. Ants. Prop., AP-H1, 106-112, 1963.

* Answers to starred {*) problems are given in App. D.
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{by Show that the maxima, nulls and half-power points of the pattern are given by
the following relations:

. kA
Maxima: ¢ = arcsin (i FA)
: . {2k + 1A
Nuils: = + —
ulls ¢ = arcsin [_ o7
2k A
Half-power points: ¢ = arcsin [i (_%”_A]

wherek =0,1,2,3,....

(c) For d = A find the maxima, nulls and half-power points, and from these points
and any additional points that may be needed plot the E(¢) pattern for
0° < ¢ < 360°. There are four maxima, four nulls and eight half-power points.

(d) Repeat for d = 3.4/2.

(e) Repeat for d = 44.

(f) Repeat for d = i/4. Note that this pattern has two maxima and two half-power
points but no nulls. The half-power points are minima.

Four sources in square array.

{a} Derive an expression for E{¢) for an array of 4 identical isotropic peint sources
arranged as in Fig. P4-2. The spacing 4 between each source and the center
point of the array is 31/8. Sources 1 and 2 are in phase, and sources 3 and 4 in
opposite phase with respect to 1 and 2.

(&) Plot, approximately, the normaiized fieid pattern.

Figure P4-2 Four sources in square array.

Twao point sources,

(=) What is the expression for E(¢) for an array of 2 point sources arranged as in
the figure for Prob. 4-1. The spacing 4 is 34/8. The amplitude of source | in the
¢ plane is given by |cos ¢ | and the phase by ¢. The amplitude of the field of
source 2 is given by | cos (¢ — 45°)| and the phase of the field by ¢ — 45°.

(b) Plot the normalized amplitude and the phase of E(¢) referring the phase to the
centerpoint of the array.

Four sources in broadside array.

(a) Dierive an expression for E{¢)} for a linear in-phase broadside array of 4 identi-
cal isotropic point sources. Take ¢ = 0 in the broadside direction. The spacing
between sources is 54/8.

(&) Plot, approximately, the normalized field pattern ((°F < ¢ < 360°).
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{c) Repeat parts {a) and (b) with the changed condition that the amplitudes of the 4
sources are proportional 1o the coefficients of the binomial series for {g@ + by ™!

4-5 Tchebyscheff Ti(x)and T(x).
{a) Calculate and plot cos 6 as x and cos 36 as y, for —I < x < +1. Corﬁpare with
the curve for Ti{x).
{h} Calculate and plot cos & as x and cos 66 as y, for —1 < x < + 1. Compare with
the curve for Ti{x).

*46 Five source Dolph-Tchebyscheff (D-T) distribution.

{a) Find the Dolph-Tchebyscheff current distribution for the minimum beam width
of a linear in-phase broadside array of five isotropic point sources. The spacing
between sources 15 42 and the sidelobe level 1s to be 20 dB down. Take ¢ = 0
in the broadside direction.

(b} Locate the nulls and maxima of the minor lobes.

{c) Plot, approximately, the normalized field pattern (0° < ¢ < 360°})

{d) What is the half-power beam width?

4-7 Eight-source D-T distribution.

{@) Find the Dolph-Tchebyschel current distribution flor the minimum beam width
of a linear in-phase broadside array ol 8 isotropic sources. The spacing between
elements is 34/4 and the sidelobe level is to be 40 dB down. Take ¢ = 0 in the
broadside direction.

(k] L« ;ate the nulls and the maxima of the minor lobes.

{c} Plot, approximaitely, the normalized field pattern (0° < ¢ < 360%).

{dy What is the hall-power beam width?

4-8 n-source array.

{u) Derive an expression for E() lor an array of n identical isotropic point sources
where § = f(, 4, 8). ¢ is the azimuthal position angle with ¢ = 0 in the direc-
tior of the array. é is the phase lag between sources as one moves along the
array in the ¢ = (° direction and d 15 the spacing.

{b) Plot the normalized field as ordinate and ¥ as abscissa for n = 2, 4, 6, 8, 10 and
12for 07 < o < 180°

4% Ten-source end-fire array.
{a) Plot E{$) for an end-fire array of » = 10 identical isotropic point sources
spaced 34/8 apart with é = - 3n/4.
{b} Repeat with é = —=[(3/4} + (1/m)].
*4-10 Two-source broadside array.
{a} Calculate the directivity of a broadside array of two identical isotropic in-phase
point soutces spaced 4/2 apart along the polar axis, the field pattern being

given by
E=cos (E cos ﬂ)
2
where 8 is the polar angle.

(b) Show that the directivity for a broadside array of two identical isotropic in-
phase point sources spaced a distance d is given by
b 2
"1 + {A4/2nd) sin (2rd/A)
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4-11 Two-source end-fire array.
{(a) Ca[culatf: the directivity of an end-fire array of two identical isotropic point
sources in phase opposition, spaced 1/2 apart along the polar axis, the relative

field pattern being given by
. fr
E = sin (5 cos 8)
where 8 is the polar angle.
{b) Shf)w that the directivity of an ordinary end-fire array of two identical isotropic
point sources spaced a distance 4 is given by

. 2
1 + {i/4nd) sin (4rnd/1)

412 Four-tower BC array. A broadcasting station requires the horizontal plane pattern
indicated by Fig. P4-12. The maximum field intensity is to be radiated northeast
with as little decrease as possible in field intensity in the 90° sector between north
and east. No nulls are permitted in this sector. Nulls may occur in any direction in
the complementary 27¢° sector. However, it is required that nulls must be present

fo‘r the directi(?ns of due west and due sauthwest, in order to prevent interference
with other stations in these directions.

N
NE

max

tntensity nearty
uniform

£
Ml a5°

MNull
Sw

S
Figure P412 Four-tower BC array patiern requirements.

Design a four-vertical-tower array to fulfill these requirements, The currents
are 1o be equal in magnitude in all towers, but the phase may be adjusted to any
relationship. There is zlso no restriction on the spacing or geometrical arrange-
ments of the towers, Plot the field pattern. .

4-13 Two-source patterns. Calculate and plot the field and phase patterns for an array of
two isotropic sources of the same amplitude and phase, for two cases:
(@) d=%4
by d =34
Plot the field pattern in polar coordinates and phase pattern in rectangular coordi-
nates with:
1. Phase center at source 1
2. Phase center at midpoint
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4-14 Field and phase patterns. Calculate and plot the field and phase patterns of an
array of 2 nonisotropic dissimilar sources for which the total field is given by

E = cos ¢ + sin ¢fy
whercw=dcos¢+5=§(cosqb+1)

Take source 1 as the reference for phase. See Fig. P4-14.

Figure P4-14 Field and phase paiterns.

*4.15 DT 6-source array. Calculate the Dolph-Tchebyscheff distribution of a six-source
broadside array for R = 5, 7 and 10. Explain the variation.
4-16 Two-unequal-source array. In Case 5 (Sec. 4-2¢} for 2 isotropic point sources of
unequal amplitude and any phase difference show that the phase angle of the totat
field with midpoint of the array as phase center is given by

fa—-1 ¥
tan~* =
an (a+ltan2)

4-17 Field and phase patterns. Calculate and plot the field and phase patterns for the
cases of Figs. 4-21 and 4-22 and compare with the curves shown.
*4.18 Five-source array.

{2) What is an expression for the field pattern of an array of 5 identical isotropic
point sources arranged in line and spaced a distance & { < i/2) apart? The phase
fead of source 2 over 1, 3 over 2, etc,, is 4.

(b) What value should § have to make the array a broadside type? For this broad-
side case, what are the relative current magnitudes of the sources for:
1. Maximum directivity’
2. No sidelobes
3. Sidelobes equal in magnitude to “ main ” lobe

4-19 Two-tower BC areay. A broadcast array of 2 vertical towers with equal currents is
to ha,yre a horizontal plane pattern with a broad maximum of field intensity to the
north and a null at an azimuth angle of 131° measured counterctockwise from the
nofth. Specify the arrangement of the towers, their spacing, and phasing. Calculate
and plot the field pattern in the horizontal plane.

4-20 Three-tower BC array. A broadcast array with 3 vertical towers arranged in a
straight hofizontal line is to have a horizontal-plane pattern with a broad
maximum of field intensity to the north and nulls at azimuth angles of 105°, 147°
and 213° measured counterclockwise from the north. The towers need not have
equal currents. For the purpose of analysis the center tower (2) may be regarded as
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2 towers, 2a and 2b, 2a belonging fo an array of itself and tower 1 and 2b to an
array of itself and tower 3. Specify the arrangement of towers, their spacing, cur-
rents and phasing. Calculate and plot the field paitern in the horizontal plane.

431 Four-tower BC array. A broadcast array of 4 vertical towers with equal currents is
1o have a symmetrical 4-lobed pattern in the horizontal plane with maximum field
intensity to the north, east, south and west arnd a reduced field intensity to the
northeast, southeast, southwest and northwest equal to 4 the maximum. Specify the
array arrangement, orientation, spacing and phasing. Calculate and plot the field
pattern in the horizontal plane.

*4-22 Eight-source end-fire array.

{@) Calculate and plot the field pattern of a linear array of § isotropic point sources
of equal amplitude spaced 0.24 apart for the ordinary end-fire condition.

{b) Repeat, assuming that the phasing satisfies the Hansen and Woodyard
increased-directivity condition.

(c) Calculate the directivity in both cases by graphical or numerical integration of
the entire pattern.

*423 Rectangular current sheet. Calculate and plot the patterns in both planes perpen-
dicular to a rectangular sheet carrying a current of uniform density and everywhere
of the same direction and phase if the sheet measures 10 by 204 What is the
approximate directivity?

4-24 Twelve-sonrce end-fire array.

{@) Calculate and plot the field pattern of a linear end-fire array of 12 isotropic
point sources of equal amplitude spaced i/4 apart for the ordinary end-fire
condition.

(b} Calculate the directivity by graphical or numerical integration of the entire
pattern. Note that it is the pewer pattern {square of field pattern) which is 10 be
integrated, It is most convenient to make the array axis coincide with the polar
or z axis of Fig. 3-2 so that the patiern is a function only of 6.

(¢} Calculate the directivity by the approximate half-power beam-width method
and compare with that obtained in (b).

+4-25 Twelve-source broadside acray.

(4) Calculate and plot the pattern of a linear broadside array of 12 isotropic point
sources of equal amplitude spaced A/4 apart with all sources in the same phase.

() Calculate the directivity by graphical or numerical integration of the entire
pattern and compare with the directivity obtained in Prob. 4-24 for the same
size array operating end-fire.

{¢) Calculate the directivity by the approximate half-power beam-width method
and compare with that obtained ini {b).

4-26 Twelve-source end-fire array with increased directivity. .
(a) Calculate and plot the pattern of a linear end-fire array of 12 isotropic point

sources of equal amplitude spaced 4/4 apart and phased to fulfill the Hansen
and Woudyard increased-directivity condition.

(b} Calculate the directivity by graphical or numerical integration of the entire
patiern and compare with the directivity obtained in Probs. 4-24 and 4-25.

{¢) Calculate the directivity by the approximate hall-power beam-width method
and compare with that obtained in {b).

417 n-source array. Varidble phase velocity. Referring to Fig. 4-18, assume that the
uniform array of n isotropic point sources is connected by a transmission system
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extending along the array with the feed point at source 1 so that the phase of
source 2 lags | by ed/p, 3 lags 1 by 2md/v, etc., where v is the phase velocity to the
right along the transmission system. Show that the far field is given by {4-6-8)
where ¥ = d,[cos ¢ — (1/p}], where p is the relative phase velocity, that is, p = vic
where c is the velocity of light. Show alse that p = o for the broadside case, p=2
for the maximum field at ¢ = 60", p = 1 for the ordinary end-firc case and p =
L + (1/2nd )] for the increased-directivity end-fire case.

Continaous array. Variable phase velocity. Consider that the array of discrete
sources in Fig. 4-18 is replaced by a continuous array of length L and assume that
it is energized like the array of Prob. 4-27. Show that the far field for the general
case ol any phase lag & per unit distance along the continuous array is given by
(4-14-18) where ' = L_cos p — &L = L,[cos ¢ —(1/p)], where p = v/c as in Proh.
4-27. Show also that for the four cases considered in Prob. 4-27 the p values are the
same except for the increased-directivity end-fire case where p= L1 +(12L,)].
Binomiel distribution. Use the principie of pattern multiplication to show that a
linear array with binomial amplitude distribution has a pattern with no minor
Iobes.

Two-source array. Show that for a 2-source array the field patterns
_ sin (mf/2)
- sin (/2

and E=2cos%

.are equivalent.

Directivity of ordinary end-fire array. Show that the directivity of an ordinary end-
fire array may be expressed as : :

n
D = a=-1
L+ (W2and) 3 [n kYK sin (dmkd/A)
k=1 Lo
Note that
sin ()P " v
I:m] —n+k=1.2(n k) cos 2k >

Directivity of broadside amray. Show that the directivity of a broadside array may
be expressed as

n
0=

-1 .
1+ (i/mnd) ¥ [(n — k)jk] sin (2mkd/2)
k=1

Phase center. Show that the phase center of a uniform array is at its centerpoint.

Three-source array. The center source of a 3-source array has a (current) amplitude
of unity. For a sidelobe level 0.1 of the main-lobe maximum field, find the Dolph-

Tchebyschefl value for the amplitude of the end sources. The source spacing
d =22

End-fire arrays. i/2 spacing. The following BASIC program provides antenna field-
pattern graphs in polar and rectangular coordinates for an array of 4 sources as
iNustrated in Fig. P4-35. Using modifications of this program, produce geaphs of
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the patterns for a larger number of sources spaced 4/2 apart with end-tire phasing,
such as (a) 5 sources, (b} 6 sources, (¢} 8 sources and (d) 12 sources.

)

Figure P4-35 End-fire array of 4 sources with .2 spacing. Field patterns in polar and rec-
tangular coordinates.

END-FIRE ARRAY N=4 d=4:2
POLAR PLOT

10 HOME

20 HGR

30 HCOLOR =3

40 FOR A=.02 TO 312 STEP .0

50 R =15 « SIN(6.28 » (COS(A) — 1))/SIN(1.57 » (COS(A) —1))

60 HPLOT 138 +R » COS(A),79 + A » SIN(A)

6% HPLOT 138 + R « (—COS(A)).79 + R » SIN(A)

70 NEXT A

RECTANGULAR PLOT (PCLAR PLOT STEPS 10 60 61 70 OMITTED)
60 HPLOT A+ 30,R+75

&1 HPLOT (A+3.16) » 30,-R+ 75

70 NEXT A

See also App. B.

4-36 End-fire arrays. i/4 spacing. Repeat Prob. 4-35 for the case where the spacing is i/4
instead of x/2. The patterns in this case will be unidirectional instead of bidirec-
tional as with 4/2 spacing.

4-37 Two-element interferometer. Using a computer as in the above problems, produce

' graphs of the field patterns of 2 isotropic in-phase sources with spacings of {@) 84,
(B) 164 and (c) 324.

*4-33 Two sources in phase. Two isotropic point sources of equal amplitude and same
phase are spaced 24 apart. (a) Plot a graph of the field pattern. (b) Tzbulate the
angles for maxima and nulls. |

4-39 Two sources in opposite phase. Two isotropic sources of equal amplitude and
opposite phase have 1.54 spacing. Find the angles for all maxima and nulls.
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440 Broadside armays. i/2 spacing. The following BASIC program provides antenna

field-pattern graphs in polar and rectangular coordinates for an array of 4 sources
as illustrated in Fig. P4-40. Using modifications of this program, produce graphs of

the patterns for a larger number of in-phase sources spaced 4/2 apart, such as () 6
sources, (k) § sources and (c} 12 sources.

M| P

(2)

Broadside

AN AN

~ NV

Figure P4-40 Breadside array of 4 sources with 1/2 spacing. Field patterns in pelar and
reclangular coordinates.

BROADSIDE ARRAY N=4 d=A/2
POLAR PLOT )
10 HOME
20 HGR
30 HCOLOR =3
40 FOR A =.02 TO 626 STEP .01
80 R =15 ¢ SIN(6.28 « COS{A))/SIN(1.67 » COS{A))
80 HPLOT 138 + R » COS5(A),79 + R » SIN{A}
70 NEXT A
RECTANGULAR PLOT (PCLAR PLOT STEPS 10 6C 70 OMITTED)
?/K:LOT A«30R+75
0 NEXT A

See also App. B.

4-41 Three unequal sources. Three isotropic in-line sources have i/4 spacing. The middle
source has 3 times the current of the end sources. H the phase of the middle source
is 0° the phase of one end source +90° and the phase of the other end source
—90°, make a graph of the normalized field pattern.

4-42 Long broadside array. Show that the HPBW of a long uniform broadside array is
given {without approximation) by 50.8°/L,, where L, = L/A = length of array in
wavelengths.

4-43 Phase center of 2-sonrce array. An array consists of 2 isotropic point sources, one at
the origin and one at a distance of 4/2 in the x direction. I the source at the origin
has twice the amplitude {field) of the other source, find the position of the phase
center of the array.

*4-44 24-source end-fire array. A uniform lincar array has 24 isotropic point sources with
a spacing of i/2. If the phase difference § = —x/2 (ordinary end-fire condition),
calculate exactly {a) the HPBW, (b} the first sidelobe level, (c) the beam solid angle,
() the beam efficiency, (e} the directivity and { ) the effective aperture.
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4-45 Stray factor and directive gain. The ratio of the main beam solid angle 1, to the
{total) beam solid angle (3, is called the main beam efficiency. The ratio of the
minos-lobe solid angle 2, to the (total) beam solid angle 01, is called the stray
Jactor. Tt follows that £,/ +Q,/0Q,=1. Show that the average directive gain
over the minor lobes of a highly directive antenna is nearly equal to the stray
factor. The directive gain is equal to the directivity multiplied by the normalized
power pattern [ =DP,(6, ¢)], making it a function of angle with the mazimum
value equal to D.

4-46 Power patterns. Write and run power-pattern programs for Probs. 4-35 and 4-40.

4-47 End-fire array with incressed gain. Write and run normalized feld- and power-
pattern programs for end-fire arrays with d = /4, § = ~(2nd/1) — (a/n) for n =4,
8,12 and 16. :

4-48 Grating lobe pattern. Write and run field-pattern programs for broadside arrays
with d = A for n = 4, 8, 12 and 16. With d = 4, grating lobes appear.
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51 THE SHORT ELECTRIC DIPOLE. Since any linear antenna may
_be considered as consisting of a large number of very short conductors connected
1n series, it is of interest to examine first the radiation properties of short condue-
tors. From a knowledge of the properties of short conductors, we can then
prmgcd to a study of long linear conductors such as are commonly employed in
practice,

_ A short linear conductor is often called a short dipole. In the lollowing
discussion, a short dipole is always of finite length even though it may be very
short. If the dipole is vanishingly short, it is an infinitesimal dipole.

Let us consider a short dipole such as shown in Fig. 5-1a. The length L is
very_short compared to the wavelength (L < ). Plates at the ends of the dipole
prowd‘e capacitive loading. The short length and the presence of these plates
result in a uniform current7 along the entire length L of the dipole. The dipole
may be energized by alanced transmission line, as shown. It is assumed that
the transmission line does not radiate and, therefore, its presence will be disre-
garded. Radiationfrom the end plates is also considered to be negligible. The
diameter d of the dipole is small compared to its length (d < L). Thus, for pur-
poses _of andlysis we may consider that the short dipole appears as in Fig. 5-1b.
Here it consists simply of a thin conductor of length L with a uniform current f
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l ~9  Figure 51 A short dipole antenna {a) and
(@) &) its equivalent (b).

and point charges ¢ at the ends. The current and charge are related by

dq
i i (1)

52 THE FIELDS OF A SHORT DIPOLE. Let us now proceed to
find the fields everywhere around a short dipole. Let the dipole of length L be
placed coincident with the z axis and with its center at the origin as in Fig. 5-2.
The relation of the electric field components, E,, E; and E,, is then as shown. It
is assumed that the medium surrounding the dipole is air or vacuum.

In dealing with antennas or radiating systems, the propagation time is a
matter of great importance. Thus, if a current is flowing in the short dipole of
Fig. 5-3, the effect of the current is not felt instantancously at the point P, but
only after an interval equal to the time required for the disturbance to propagate
-over the distance r. We have already recognized this in Chap. 4 in connection
with the pattern of arrays of point sources, but here we are more explicit and
describe it as a retardation effect.

Figare 52 Relation of dipole to coordinates.
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Figure 5-3a Geometry for short dipole.

Accordingly, instead of writing the current I as’
I=I,e )

which implies instantaneous propagation of the effect of the current, we introduce
the propagation (or retardation) time as done by Lorentz and write

[I] — IO gloole —trfe] (2}

where [I] is called the retarded current. Specifically, the retardation time r/c
results in a phase retardation wric = 2afrjc radians = 360° fr/c = 360° 1/T, where
T =1)f=time of one period or cycle (seconds) and f = frequency (hertz,
Hz = cycles per second). The brackets may be added as in (2) to indicate explic-
itly that the effect of the current is retarded.

Equation (2) is a statement of the fact that the disturbance at a time ¢ and
at a distance r from a current element is caused by a current {I] that occurred at
an earlier time t — r/c. The time difference r/c is the interval required for the
disturbance to travel the distance r, where ¢ is the velocity of light
(=300 Mm s~ ). .

Electric ard magnetic fields can be expressed in terms of vector and scalar
potentials. Since we will be interested not only in the fields near the dipole but
also at distances which are large compared to the wavelength, we must use retar-
ded potentials, i.e., expressions involving ¢ — r/c. For a dipole located as in Fig.
5-2 or Fig. 5-3a, the retarded vector potential of the electric current has only one
component, namely, A, . Its value is

*ﬂj""” (1, 3

.=
dn ) p §

' 1t is assumed thai we take either the real {cos wt) or imaginary (sin wt) part of £,
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Figure 5-3b Relations for short dipale
whenr® L.

Dipote

where [77] is the retarded current given by
[I] - Io plotr — iatel}t {3a)
In (3} and (3a),

z = distance to a point on the conductor
I, = peak value in time of current {uniform along dipole}
g = permeability of free space =4n x 107" Hm™*

If the distance from the dipole is large compared to its length {r » L) and if the
wavelength is large compared to the length (4 3 L), we can put s = r and neglect
the phase differences of the field contributions from different parts of the wire.
The integrand in (3) can then be regarded as a constant, so that (3) becomes

Ko LIO ejoo[t—[r.fl:l]
4, =0
4nr

@)

The retarded scalar potential ¥V of a charge distribution is

|
V=— L Le) dt {3)
4ney s
where [p] is the retarded charge density given by
[} = po etet =0 ©

and dt = infinitesimal volume element

£, = permittivity or dielectric constant of free space = 885 x 107'* Fm™!

Since the region of charge in the case of the dipole being considered is confined
to the points at the ends as in Fig. 5-1b, (5) reduces to

VzL{Lﬂ_[il} e
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From (5-1-1) and (3a),

[q] = j.[f] dr = IO j.ejw[t—(sm} dr = m {8)

jew
Substituting (8) into (7),

I ploll ~tsi/ell giolt —isafe)l
X [ - ] ®

A, jor 5 53

Referring to Fig. 5-3b, when r » L, the lines connecting the ends of the dipole
and the point P may be considered as parallel so that

L
sl=r—5c058 (10}
L
and 85 =r+5cos (1 (LB}
Substituting (10} and (11) into (9) and clearing fractions, we have
IO ej'mil—!r.fr]]
= 4dneq joo
elotizaem Sy 4 (L/2) cos 8] — e ML sos0py, _ (1/9) cos 6]
X = (12)

r

where the term £* cos? 6/4 in the denominator has been neglected in comparison
with r? by assuming that r > L. By de Moivre's theorem (12) becomes

V= Lo el cos wL cos 8 + j sin ol cos r+ L cos 8
T daggjor? Ze J 2¢ 2

wi. cos 8 wl cos 0 L
_ hctenuiete A YT il il _= 13
(cos > J sin " )(r > cos 9)] (13)

If the wavelength is much greater than the length of the dipole (4 > L), then

cuLcosB_ nLcosB~

_ —_ 14

c0s —— cos ~—— | (14}

and sin wL cos @ . wl cos 8§ {15)
2c 2c

Introducing (14) and (15) into (13), the expression for the scalar potential then

reduces to :

jeolt = (rfcH]

. JoLcosf el (l"'»iiz) (16)

4mey ¢ r o jor

Equations (4) and (16) express the vector and scalar potentials everywhere due to
a short dipole. The only restrictions are that r » L and 4 » L. These equations
give the vector and scalar potentials at a point P in terms of the distance 7 to the
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Figure 54 Resolution of veclor potential into A, and
A, components.

point from the center of the dipole, the angle 8, the length of the dipole L, the
current on the dipole and some constants.

Knowing the vector potential A and the scalar potential V, the electric and
magnetic fields may then be obtained from the relations

E=—joA — VV (17

-and H = -:; VxA (18}

It will be desirable to obtain E and H in polar coordinates. The polar
coordinate components for the vector potential are

A =id4, + 04, + ¢4, (19)

Since the vector potential for the dipole has only a z component, A;,=0,and 4,
and A, are given by (see Fig. 5-4)

A = A, cos 8 (20)
_ Ay =—A,sin @ @
where A4 is as given by (4). In polar coordinates the gradient of V is
av 1&v 1 oV

VVo=a, o gy m o Ay e
aar™ +a0r 68+a"rsin86¢

Calculating now the electric field E from (17), let us first express E in its
polar coordinate components. Thus,

E=aE, +8,E +8,E, 23)

(22)

From (17), {19) and (22) the three components of E are then
E = —jwA, — ?K (24)
cr
. 1av
Ey = —jwd, — . 56 (25)
. 1 a8V
o= —iods = a5 39 (26)

In (26), A, = 0. The second term is also zero since ¥ in (16) is independent of ¢
so that 3V/d¢ = 0. Therefore, E, = 0. Substituting (20) into (24} and (21) into
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(25), we have

. v
E = —jwA, cos 8 — FN 27
. . 1V
and Ey = jwA, sin 6 ~ - 78 (28)

Introducing now the values of A, from {4) and ¥ from (16) into (27) and (28) and
performing the indicated operations, we obtain

Io L cos g g0l =tll (1 1
E, = —S+— (29)
2ne, crt  jor
IoLsin @ —von (i | f
and E,=-2 0, -
o dre, (czr ta T jor? ) (30)

In obtaining (29} and (30) the relation was used that pae, = 1/c?, where
¢ = vetocity of light.

Turning our attention now to the magnetic field, this may be calculated by
{18). In polar coordinates the curl of A is

Vx Aot [a{sin 04, a{A,)]

r sin & o a¢
8 [a4, _drsin )4, | dfara) 4,
rsin 8| d¢ _or + e E] 31

Since A, = 0, the first and fourth terms of (31) are zero. From (4} and {20} and
(21} we note that 4, and 4, are independent of ¢, so that the second and third
terms of {31} are also zero. Thus, only the last two terms in (31) contribute, so
that ¥ x A, and hence also H, have only a ¢ component. Introducing (20} and

(21} into (31), performing the indicated operations and substituting this result into
{(18), we have

|H|=H, = (32)

4z =

IoLsin 8 gfot-®al (i, }
crr?
and H=H,=0 (33)

Thus, the fields from the dipole have only three components E, , E, and H .-
The components E,, H, and H, are everywhere zero.

Whe‘n r is very large, the terms in 1/r? and 1/r* in (29), (30) and (32) can be
neglected in favor of the terms in 1/r. Thus, in the far field E, is negligible, and we
have effectively only two field components, £, and H,, given by

_ jolyLsin g gett-tt  p g

E =2t o t=1trfe)] .
(] _ 4eg cir i Incger sin @ ¢l 34)
and _JjoloLsin 8 gheelt =il _ I BL .
H 4ncr A § efetmim @3
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. Figore 5-5 Near- and far-field pattetns of E; and
Dipole Dipole H, components for short dipole (a) and near-field
{a) [1:3] pattern of E, component {&).

Taking the ratio of E, te H, as given by (34) and (35), we obtain

E_1_ [l_3170 (36)
Hy sy £

This is the intrinsic impedance of free space (a pure resistance).

Comparing (34) and (35) we note that E, and H, are in time phase in the far
field. We note also that the field patterns of both are proportional to sin #. The
pattern is independent of ¢, so that the space pattern is doughnut-shaped, being
a figure-of-revolution of the pattern in Fig. 5-5a about the axis of the dipole.
Referring to the near-field expressions given by (29), (30) and (32),. we note that
for a small r the electric ficld has two components E, and E;, which are both in
time-phase quadrature with the magnetic field, as in a resonator. At intermediate
distances, E, and E, can approach time-phase quadrature so that the total elec-
tric ficld vector rotates in a plane parallel to the direction of propagation, thus
exhibiting the phenomenon of cross-field. For the E; and H, components, the
near-field patterns are the same as the far-field patterns, being proportional to
sin 8 (Fig. 5-5a). However, the near-field pattern for E, is proportional to cos 6 as
indicated by Fig. 5-5b. The space patiern for E, is a figure-of-revolution of this
pattern around the dipole axis. -

Let us now consider the situation at very low frequencies. This will be
referred to as the guasi-stationary, or dc, case. Since from (8),

1] = I, e~ = julq] 37

(29) and (30) can be rewritten as

gL cos 8 { joo i)
E = 2ne, er? t5 8)
_[qLsin8f o ju 1
and E = dne, c*r + cr? te 39)
The magnetic field is given by (32) as
_ /1L sin & ( jo 1
Hy= 4n cr + r? 40
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Table 5-1 Fields of a short electric dipolet

Component  General expression Far field Quasi-siationary
[fLcos@ {1 1 go L cos @
E S S — 0
v Ineg el jor? 2neg r?
E [f1L sin & ja |1 . 1 [{1Ljew sin § _J60a[l]sin@ L goLsing@
! 4, el er? jwr? dnegcir r A dmeqr
H [J]L sin 9 jw. 1 [FLjew sinc @ _ jli)sin @ L IsL sin @
¢ 4n e r? dner o x 2 . dxr?

+ The restriction applies that r 3 L and 1 » L. The quantities in the table are in SI units, (hat is, E in volts per
meter, i in amperes per meter, [ in amperes, r in meters, etc. [7] is as given by {37). Three of the field components of
an ekeciric dipale are everywhere zern, that is,

E,=H.<H, =0

At low frequencics, w approaches zero so that the terms with @ in the
numeraior can be neglected. As w - 0, we also have

[q] = g0 el —triall 4o 41)
and (=1, : (42)

Thus, for the quasi-stationary, or dc, case, the field components become, from
(38), (39) and (40), '

go L cos @ .

Rl e _ @)
go L sin 8

Eo= e (44)
foL sin

Hy ==~ (43)

The restriction that r 3 L still applies.

The expressions for the electric field, (43) and (44), are identical to those
obtained in electrostatics for the field of two point charges, +4, and —gqq,
separated by a distance L. The relation for the magnetic field, (45), may be recog-
nized as the Biot-Savart relation for the magnetic field of a short element carry-
ing a steady or slowly varying current. Since in the expressions for the
quasi-stationary case the fields decrease as 1/r? or 1 /r3, the fields are confined to
the vicinity of the dipole and there is negligible radiation. In the general expres-
sions for the fields, (38), (39) and (40), it is the 1/r terms which are important in
the far field and hence take into account the radiation.

The expressions for the fields from a short dipole developed above are sum-
marized in Table 5-1. .

If we had been interested only in the far field, the development beginning
with (5) could have been much simplified. The scalar potential V does not con.
tribute to the far field, so that both E and H may be determined from A alone.
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Thus, from (17), E and H of the far field may be obtained very simply from

|E| = Eg = —jod, (45q)
. E Jou

where Z = /jigfe, = 377Q
H, may also be obtained as before from (18) and E,from H,. Thus,

1
Hy=|H|=—|VxA| (45¢c) .
Ho
and neglecting terms in 1/r2,
Z
Eg=2ZH,=—|V x A| (45d)
Ho
Equation (30) for the # component of the clectric field may be reexpressed
as
Ioe™L,Zsinf] 1 .
=——\|—[=-360° 90
Ey A 2r, 2t .
1 l a -1
— [ =360° "+ —— [—=360° 5—90] Vm 46)
+ dnr [=3607r, +0° + 8a2r) r ( ) '
where L, = L/
r,=rfd
Z=3717Q

The restrictions apply that
i L (L, <1

r» L (r;» LY (47
If we let
1
A=— {—360" ] + 90°
2r, a
B ! [=360°r, +O°
= _
-~ 4nr?
C= ——1— —360° r, — 90°
"~ 8n2rd
{46} becomes

_ Ipe"™L,Z sin B
e

The magnitﬁdes of the components A, B and C are shown in Fig. 5-6 as a
function of r; (distance in wavelengths). For r; greater than the radian distance

E, (A+B+C) {48)
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Figure 56 Variation of the magnitudes of the components of E, ol a short efectric dipole as a
function of distance {r/i). The magniludes of all components equal r at the radian distanee {/(2x). At
larger distances energy is mostly radiated, a1 smaller distances mostly stored.

[1/2n)], component A of the electric field is dominant, for r; less than the radian
distance component C of the electric field is dominant, while ar the radian dis-
tance only B contributes { =) because although |4| =|B|=|C}=mn, 4 and C
are in phase opposition and cancel.

Equation (32) for the ¢ component {only component) of the magnetic field
may be reexpressed as

I,e'L; sin 8|:

H, = 1

o o 1 =3 =]
2—"1; 360° r, + 90 +4m_§!—360 r1+0] 49
The restrictions of (47) apply.

For r; greater than the radian distance the first component of the magnetic
field (in brackets) is dominant, for r; less than the radian distance the second
component of the magnetic field is dominant, while at the radian distance both
components are equal (=#) and in phase quadrature,
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Note that the ratio of E; to H,, as given by the ratio of (46} to {49), is an
impedance whose value becomes exactly equal to Z, the intrinsic impedance of
space (=377 Q), for ry » 1/(2r).

For the special case where f = 90° (perpendicular to the dipoie in the xy
plane of Fig. 5-2) and at r; » 1/(2n), '

I, L _
|Hol = =3 I (AmTY) {50)
while at r, <« 1/(2n),
I, L
|H,| = —w (50a)

which is identical to the relation for the magnetic field perpendicular to a short
linear conductor carrying direct current as given by (45).

The magnetic field at any distance r from an infinite linear conductor with
direct current is given by

Hy==% (50b}

which is Ampere’s law.

Remarkably, the magnitude of the magnetic field in the equatorlal plane
(8 = 90°) in the far field of an oscillating /2 dipole is identical to (50b) (Ampere’s
law). It is assumed that the current distribution on the 4/2 dipole is sinusoidal.
This is discussed in more detail in Sec. 5-3. The above magnetic field relations are
summarized in Table 5-2.

Rearranging the three field components of Table 5-1 for a short electric
dipole, we have

_[L,Zcoso[ 1 . 1
" y) 2nr? ) anin D
_ (L, Zsing) . 1 1 l
Eo = A T o, 2r; 4m'1 AT 8n’r 62
C[Lsin8l. 1 1
Ho=— U7, anr 3

We note that the constant factor in each of the terms in brackets differs from the
factors of adjacent terms by & factor of 2z, as do the constant factors in A, B and
C of (48). '

1 See, for example, J. D, Kraus, Electromagnetics, 3rd ed., McGraw-Hill, 1984, p. 170.
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Table 52 Magnetic fields from dipoles and linear

cenductorst
IeL
Short oscillating dipole [H,|= —"53 AmY
atry ¥ 1/(2x)
re L, A% L
o Il
Short oscillating dipole [Hyl = — {(Am™")
at r, < 1/(2m) Az
ry» L Aip» L
. IyL
Short linear conductor = Hy= - {Am™Y
with direct current dar
re L
o Iy '
{2 oscitlating dipole, [Hel = — (AmY
far fieid 2nr
A o
Infinite linear conductor H, = — (Ampere’s law) Am™)
with direct current r
at any r
t Magnetic field a1 dist r from dipoles and linezr conductors (in direction

perpendicular Lo dipole, in xy plane of Fig. 5-2) with current £,

At the radian distance [r; = 1/(2n)], (51), (52) and (53) reduce to

2/2n[IL, 2
E, = = ];L,1 cos 0 —45° (54)
7l IJL,; Z sin @
p=— (55)
2a[IL; sin 0
Hy= )ﬂ[‘:‘llq /45° (56)

‘ The magnitude of the average power flux or Poynting vector in the 8 direc-
tion is given by

Sy=4%Re E,H3 = 1E,H, Re 1/—90° = 1E,H, cos (—90°) =0 (57)

md;catmg that no power is transmitted. However, the product £, H, represents
imaginary or reactive energy that oscillates back and forth from electric to mag-
netic energy twice per cycle.

In like manner the magnitude of the power flux or Poynting vector in the

r direction is given by
1

2./2

S, =3E,H, cos (—45%) = E,H, (58}

indicating energy fiow in the r direction.
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Much closer to the dipole [r; < 1/(2n)], but with the restrictions of (47) still
applying, (51), (52) and (53) reduce appreximately to

{NL;Z cos @

Er ==} 4’!2”; (59)
_ . [DL;Zsin a

Ey= - 8x2ir (60)
_H]L;sm 8

Ho = gutr] (61)

From these equations it is apparent that §, = §; = 0. However, the pro-
ducts E H, and E,Hd, represent imaginary or reactive energy oscillating back
and forth but not going anywhere. Thus, close to the dipole there is a region of
almost complete energy storage.

Remote from the dipole [r; » 1/(2m)], (51), (52) and {(53) reduce approx-
imately to

E =0 (62)
. [FIL, Z sin &

£y = 2ir, 63)
. [f]L, sin &

He=i 2ir, 64

- Since E, = 0, there is no energy flow in the 8 direction (S, = 0). However,
since E, and H,; are in time phase, their product represents real power flow in the
outward radial direction. This power is radiated.

The Poynting vector or power flux around a short dipole antenna is shown
by means of vectors in Fig. 5-7a. The length of the vectors is proportional to the
Poynting vector magnitude. Double-ended vectors indicate imaginary or reactive
power (vars per square meter) while single-ended vectors represent real power
flow (watts per square meter) in the direction indicated.

The region near the dipole is ore of stored energy (reactive power) while
regions remote from the dipole are enes of radiation. The radian sphere at r;, =
1/(2r) marks a zone of transition from one region to the other with a nearly equal
division of the imaginary and real (radiated) power.

The region close to the dipole_ may be likened to a spherical resonator
within which pulsating energy is trapped, but with some leakage which is radi-
ated. There is no exact boundary to this resonator region, but if we arbitrarily
put it at the radian distance a qualitative picture may be sketched as in Fig. 5-7b.

. 5.3 RADIATION RESISTANCE OF SHORT ELECTRIC

DIPOLE. Let us now calculate the radiation resistance of the short dipole of
Fig. 5-1b. This may be done as follows. The Poynting vector of the far field is
integrated over a large sphere to obtain the total power radiated. This power is
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Figure 5-Ta  Power flux veciors at three distances near a short dipole antenna. Double-ended vectors
indicate reactive power (vars per square meter) while single-ended vectors represent real power (watts
per square meter). At the innermost distance [r, = 1/(2m)?], the power is atmost entirely imaginary
{reactive) with stored energy oscillating from clectric to magnetic 1wice per cycle. At the outermost
distance, the power is almost cntirely real and flowing radially outward as radiation. At the radian
sphere [#, = 1/{2n)], the condition is in transitton with energy pulsating in the & direction and also
tadiating in the radial direction. Some stored energy (not shown) is also pulsating in the radial direc-
tion. Note that for proper scale, vectors at the innermost distance should be 10000 times larger while

at the outermost distance they should be 100 times smaller. The three radial distances are not to scale.
The other quadrants are mirror images.
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Figmls-‘fll Sketch suggesting that within the radian sphere the situation is like that inside a reson-
ator with high-density pulsating energy accompanied by lcakage which is radiated.
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then equated to I>R where I is the rms current on the dipole and R is a resist-
ance, called the radiation resistance of the dipole.
The average Poynting vector is given by

S=14Re(E x HY (1)

The far-field components are E, and H, so that the radial component of the
Poynting vector is

S, =14 Re E, H} @

where E, and HY} are complex. )
The far-field components are related by the intrinsic impedance of the

medium. Henoce,
E9=H¢,Z=H¢ﬁ (3)

S,=4ReZH, :=é|H¢12ReZ=%|H¢|‘\/§ )
The total power P radiated is then

P:HS, ds=l\/ér'rm¢12r2 sin 0 d6 d¢ {3}
2¥Ve o Jo :

where the angles are as shown in Fig. 5-2 and | H,| is the absolute value of the
magnetic field, which from (5-2-35) is

Thus, (2) becomes

wly L sin 8
o ——— 6
| H,| dncr (6)
Substituting this into (5) we have
1yd 2 2x "=
p_L [pELE [sin39d9d¢ )
Rve = o 1o

The double integral equals 87/3 and (7) becomes

po [HELLE 8)
e I2m

This is the average power or rate at which energy is streaming out of a sphere
surrounding the dipole. Hence, it is equal to the power radiated. Assuming no
losses, it is also equal to the power delivered to the dipole. Therefore, P must be
equal to the square of the rms current { flowing on the dipole times a resistance
R, called the radiation resistance of the dipole. Thus,

pPIE (’_0)2 ©)
\/; 12 ﬁ R,
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R, = \/%ﬁ—;i (1)
n

For air or vacuum / /e = \/ /e, = 377 = 1207 Q so that (10) becomes’

Solving for R, ,

2
R, = 80::2(%) =80n%L: =T90L? (Q) (11)

As an example suppose that L, = #5. Then R, = 7.9 Q. If L, = 0.01, then
R, = 0.08 Q. Thus, the radiation resistance of a short dipole is small.

In developing the field expressions for the short dipole, which were used in
obtaining (11), the restriction was made that A » L. This made it possible to
neglect the phase difference of field contributions from different parts of the
dipole. If L, = 4 we violate this assumption but, as a matter of interest, let us
find what the radiation resistance of a /2 dipole is, when calculated in this way.
Then for L; = 4, we abtain R, = 197 Q. The correct value is 168 Q (see Prob.
5-3), which indicates the magnitude of the error introduced by violating the
restriction that 4 » L to the extent of taking L = /2.

It has been assumed that with end-loading (see Fig. 5-1a) the dipole current
is uniform. However, with no end-loading the current must be zero at the ends
and, if the dipole is short, the current tapers aimost lincarly from a maximum at
the center to zero at the ends, as in Fig. 2-12b, with an average value of 1 of the
maximum. Modifying (3) for the general case where the current is not uniform on
the dipole, the radiated power is

L (wRILD 12
P_—\/;—Drc (W) (12

where 1,, = amplitude of average current on dipole (peak value in time)

The power delivered to the dipole is, as before,
P=iRR (W {13

where I, = amplitude of terminal current of center-fed dipole (peak value in time)

Equating the power radiated (12) to the power delivered (13) yields, for free space
(1 = pg and € = g,), 4 radiation resistance

R, = ?9((1-;—‘3) sz ) (14)?

' W/ #ofea = 376.73 Q. 377 and 120x arc convenient approximations.
* As already given by (2-20-3). See also footnote accompanying (2-20-3).
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For a short dipole without end-loading, we have I, = 41,, as noted above, and
(14) becomes

R, =197L%2 (£2) (15)

5-4 THE FIELDS OF A SHORT DIPOLE BY THE HERTZ
VECTOR METHOD. 1In Sec. 5-2 the fields of 2 short dipole were obtained
by a method involving the use of vector and scalar potentials. Another equivalent
method which is sometimes employed makes use of the Hertz vector. Since this
method is frequently found in the literature, it wili be of interest to use it to find
the fields of a short electric dipole. The fields so obtained are identical with those
found by the vector-scalar potential method, indicating the equivalence of the
two procedures.

The retarded vector potential of any efectric-current distribution is given by

A=£ Bjia‘w:
4z J, r

()

where the retarded current density [J] is given by

[J] — ']0 gl = (ric] (2}
Muitiptying numerator and denominator by &, (1) may be written as
fil}
A=pe— 3
HE o 3
where
3 1 J
a_ g, @)

ot 4me |, »

where r represents time and t volume. The quantity T is the retarded Hertz .
vector of retarded Hertzian potential. Since [J] is the only time-dependent quan-
tity on the right-hand side of (4), we have for the retarded Hertz vector

! d
H=— 'UJI raf’:: 1_ Eldt (5)
4ne ), 1 dngjo J, v
Since
M = IT, gfvl: -~
we obtain from (3)
A = jeouell (6)
and nm=--4a 7
wpe
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If the retarded Hertz vector is known, both E and H everywhere can be
calculated from the relations

E = o?uedl + V(¥ + II) (8)
H = jueV x 1 (1Y)

Thus, E and H are derivable from a single potential function, TL Substituting (7}
into (8) and (9), these relations may be also reexpressed in terms of A alone. Thus,

E= —jwA ——— V(¥ - A) (10)
(OHE

H=lvxa (11
H

Let us now find the retarded Hertz vector for a short electric dipole. The
vector potential for the dipole has only a z component as given by (5-2-4). There-
fore, from (7) the Hertz vectdr has only a z component given by

.Hl} Lejm[l —iric}]

12
4trme (12)

I, =
In polar coordinates Il has two components, obtained in the same way as the
components of A in (5-2-20) and (5-2-21). Thus,

Il = 1, cos B — BII, sin § (13

Substituting (12} into (13), and this in turn in (9) and performing the indicated
operations, yields the result that

H, = [FIL sin 8 (1‘3 N lz) 14

4n cr o r

This resuit is identical with that obtained previously in (5-2-32). We could have
anticipated this result since substituting (7) into (9} gives (11), from which (5-2-32)
~ was obtained.

Substituting {12) into (13} and this in turn in (8) then gives the electric field
E everywhere. The expressions for the two components, E, and E,, so obtained

are identical with those arrived at in (5-2-29) and {5-2-30) by the use of vector and
scalar potentials.

55 THE THIN LINEAR ANTENNA. In this section expressions tor the
far-ficld patterns of thin linear antennas will be developed. It is assumed that the
antennas are symmetrically fed at the center by a balanced two-wire transmission
ht_le. The antennas may be of any length, but it is assumed that the current dis-
tribution is sinusoidal. Current-distribution measurements indicate that this is a
g90d assumption provided that the antenna is thin, t.e, when the conductor
_dlarneter is less than, say, £/100, Thus, the sinusoidal current distribution approx-
imates the natural distribution on thin antennas, Examples of the approximate
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Figure 58 Approximate nalural-current
distribution for thin, licear, center-fed
antennas of various lengths.

i §
&

5
A =X -
A 4 2

M|

natural-current distributions on 2 number of thin, linear center-fed antennas of
different length are illustrated in Fig. 5-8. The currents are in phase over each 1/2
section and in opposite phase over the next.

Referring to Fig. 5-9, let us now proceed to develop the far-field equations
for a symmetrical, thin, linear, center-fed antenna of length L. The retarded value
of the current at any point z on the antenna referred to a point at a distance s is

[I1=1,sin [2% (% + Z)]efﬂ'[l—(n'tll m
sin z—n (E + z)]
4 \2™

is the form factor for the current on the antenna. The expression (L/2) + z is used
when z < 0 and (L/2) — z is used when z > 0. By regarding the antenna as made
up of a series of infinitesimal dipoles of length dz, the field of the entire antenna
may then be obtained by integrating the fields from all of the dipoles making up

In (1) the function

To
distant
point

Figure 59 Re¢lations for symmetrical, ahin,
linear, center-fed antenna of length L.
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the antenna. The far fields dE, and dH, at a distance s from the infinitesimal
dipole dz are (sce Table 5-1)

_ j60=[I] sin 8 dz

E
dE, ) (2)
J{I7 sin 6 dz
H ==="""7°
dH, 2sd 3

Since E; = ZH, = 120rH,, it will suffice to calcuiate H,. The value of the mag-
netic field H, for the entire antenna is the integral of (3) over the length of the
antenna. Thus,

L2
H, - J aH, @
—-Li2

Now introducing the value of {17 from (1} into {3) and substituting this into (4)
we have

Hosin @k ([ 1 T2z /L .
H, =— " _ — -1 = — Jozfe
¢ 2i {J: L2 8 I 2 +z o dz
L2 2 (L )
Zein | 222 ~ Juzie
+L 5 sml:;t (2 z)]e dz} (5)

In (5), 1/s affects only the amplitude, and hence at a large distance it may be
regarded as a constant, Also at a large distance, the difference between s and r
can be neglected in its effect on the amplitude although its effect on the phase
must be considered. Further, from Fig. 5-9,

s=r—2zcosf {6)

Substituting {6) into (5) and also r for s in the amplitude factor, (5) becomes

Hy sin § gfolr =l (o 2r (L .
H =-— " _ . H —_— 1= (o cox Bzic
P 2ir _uzsm T\ +z ] |e dz

3]
+ | osin|— |z ~z]jelecsue g 7
[Fan[2 (5 4 o

Since 8 = w/c = 2x/d and B/4n = 1427), (7) may be rewritten as

iBi. sin 6 eJ'w[i‘—(r.n’ci] [y} ) L
H, = }_ﬂ;o_—T———— {j gifzemsd iy [ﬁ(~ -+ z):| dz
r -L2 2
’ fz L
+ f efree® o [ﬁ(— - z)] dz} (8)
o 2

ax . eax
J’e sin (¢ + bx) dx = pra [a sin (c + bx} — b cos (c + bx)] )

The integrals are of the form
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where for the first integral

a=jfcos @
b=p
c=BLi2
For the second integral # and ¢ are the same as in the first integral, but b = — 8.

Carrying through the two integrations, adding the results and simplifying yields

(10}

oo i1 [cos [(BL cos &)/2] — cos (,BL,Q)]
o=

2nr sin #

Multiplying H, by Z = 120r gives £, as

E, = J60[1,] [Cos FiAL cos 8)/2] — cos {BL;’2}:| an

r sin &
where [[,] = 1, e/l il

Equations (10) and (1) are the expressions for the far fields, Hyand Eg, of 3
symmetrical, center-fed, thin linear antenna of length L. The shape of the far-field
pattern is given by the factor in the brackets. The factors preceding the brackets
in (10) and {11) give the instantaneous magnitude of the fields as functions of the
antenna current and the distance r. To obtain the rms value of the field, we let
[o] equal the rms current at the location of the current maximum. There is no
factor involving phase in (10) or {11), since the center of the antenna is taken as
the phase center. Hence any phase change of the fields as a function of 8 will be a
jump of 180° when the pattern factor changes sign.

As examples of the far-field patterns of linear center-fed aniennas, three
antennas of different lengths will be considered. Since the amplitude factor is
independent of the length, only the relative ficld patterns as given by the pattern
factor will be compared.

3-3a  Case 1. /2 Antenna. When L = 4/2, the pattern factor becomes

_sos [(m/2) cos 6]

E
sin &

(12)

This patiern is shown in Fig. 5-10a. It is only slightly more directionai than the
pattern of an infinitesimal or short dipole which is given by sin 8. The beam
width between half-power points of the A/2 antenna is 78° as compared to 90° for

the short dipole. '
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)

[}

Figure 510 Far-field patterns of /2, full-wave
and 34i/2 antennas. The antennas are center-fed
and the current distribution is assumed 1o be
sinusaidal.

5-5b Case 2. Full-Wave Antenna. When L = 7, the pattern factor becomes
cos (r cos &) + 1

E= -
sin 8

(13)

This pattern is shown in Fig. 5-10b. The half-power beam width is 47°

5-5¢ Case 3. 31/2 Antenna. When L = 3472, the pattern factor is

_ cos (3= cos 6)

E= (14)

sin &
The pattern for this case is presented in Fig. 5-10c. With the midpoint of the
antenna as phage center, the phase shifts 180° at each null, the relative phase of
the iobes being indicated by the + and — signs. In all three cases, (a), (&) and (c),

the space pattern is a figure-of-revolution of pattern shown around the axis of the
antenna.
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-
E{
iy P
L F
= >
2
Figuré 511 Symmetrical center-fed dipole with sinusoidal
current distribution. The field component E, at any distance
can be expressed as the sum of 3 components radiating feom
1 the ends and the center of the dipole.

5.5d Field at any Distance from Center-Fed Dipole. The geometry for the
field-at the point P from a symmetrical center-fed dipole of length L with sinu-
soidal current distribution is presented in Fig. 5-11. The maximum current islg.
It may be shown that the z component of the electric field at the point P is given

by
—jil.Z g b g iz AL e o
E,= + —2cos —— 15
4x l: 5, L ¢ 2 r (13)
The ¢ component of the magnetic field at the point P (Fig. 5-11) is given by
ita j i BL _
H, =—2 . Jftay sz _ 3 opg — g 1
¢ 4m‘sin9(e te 528 ) (16)

Whereas the other field equations for oscillating dipoles given in this
chapter apply only with the restrictions of (5-2-47), {15) and (16) apply without
distance restrictions. Equations (15) and (16} are reminiscent of the pulsed center-
fed dipole of Fig. 2-24 in that the field at P is made up of 3 field components, one
from each end of the dipole and one from the center.

If P lies on the y axis (f = 90°) and the dipole is 1/2 long, (15) becomes

- 1,2 -
E,=- —360° /& +72 =900 (Vm™) {an
Wt e
and (16) becomes

4 -
H¢=2—;j—360";/1%+r§+90° (Am™") (18)

where r, = r/d
Z=37710
1, = maximum current = terminal current
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At a large distance the ratio of E, as given by {17) to H,as given by (18} is

The magnitude of H , is

i
IH¢I=2—~T:, (Am™") (20)

as given in Table 5-2,

56 RADIATION RESISTANCE OF 4/2 ANTENNA, To find the
radiation resistance, the Poynting vector is integrated over a targe sphere yielding
the power radiated, and this power is then cquated to {!of\/i)ZRo, where R, is
the radiation resistance at a current maximum point and I, is the peak value
in time of the current at this point. The total power P radiated was given in
{5-3-5)' in terms of H, for a short dipole. In {(5-3-3), | H, | is the absolute value.
Hence, the corresponding value of H, for a linear antenna is obtained from
{5-5-10) by putting |j{{,]} = 1,,. Substituting this into (5-3-5), we obtain

P 1513 J'h ™ {cos [(FL/2) cos #] — cos (BL/2)}?
o

x N sin &

9 d¢ (1)

~ 301 ® {cos [{BL/2) cos 8] — cos (BL/2)}* i

o sin # @
Equating the radiated power as given by (2) 10 I3 Ry/2 we have
_ IR,
p- 12! 3)
x _ 2
and R, = 60 J‘ {cos [(BL/2) cc;sine]e cos (BL/2)} 0 @
1]

where the radiation resistance Ry is referred 1o the current maximum. In the case
©of a £/2 antenna this is at the center of the antenna or at the terminals of the
transmission line (see Fig. 5-3).
Proceeding now to evaluate i4), let
tt=cos 0 and du= —sin & 49 {5)
by which (4} is transformed to

+1 2
R, = 60 J’ [cos {ﬁLulez} —:;»s BL2Y ©)
L =

'P=HS-:s=§v'EjjiH‘|’ ds

g.=<= 377 Q = intrinsic impedance (resistance) of space (19)
&
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However,

1 i i 1 i )
= == + 7
1—w? (1+uwl—-w 2(1+u I—u @
Also putting k = BL/2, {6} becomes
R — 30 J‘“ |:(cos ku — cos k)? . (cos ku — cos k}2:| &
0=

@®).

-1 1+u l—u

This integral gives the radiation resistance for a thin linear antenna of any length

L. For the special case being considered where L = 4/2, we have k = n/2. Thus, in
the case of a thin 4/2 antenna, (8) reduces to

+1 2 ¥ 2 2
R, = 30 J‘ I:cos (mu/2) 4 cos® {muy/ ):! du ©)
1 l+u l—u
Now in the first term let
d
l1+u=- and du=-2 (10)
b 4 T
and in the second term let
. _ dv'
l-w=" and du=-"% (1)
T Fid

Noting also that (v — #)/2 = (x — v')/2, Eq. (9) becomes

RoszAz‘c_m.M],dU _ (12)
o

v

But cos? {x/2) = 4{1 + cos x) so that

Ix . 2xl_o
Rozmj Mdvzwf tocosv (13)
o v o &

The last integral in (13) is often designated as Cin (x). Thus,

Cin{x)=J. l?dﬂzln}’x—ﬂ[x}

0

=0577+1n x —Ci(x) (14)
where y = ¢ = 1781 or In y = ¢ = 0.577 = Euler’s constant

The part of this integral given by

Ci (x) = In yx — Cin (x) (15)
is called the cosine integral. The value of this integral is given by
2 4 [
i *eos v o x o=
Cl{)_c)zL " dv=ln}'x—m+4!4—6!6+ {16)”
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Figure 5-12a Cosinc integral.

When x is small (x < 0.2),

Cix)=lnyx=0577+1Inx (17)
When x is large (x » 1),

Ci {x) _ s x

(18)

A curve of the cosine integral as a fufiction of x is presented in Fig. 5-12a. It is to
be noted that Ci (x) converges around zero at large values of x. From (16) and
(14) we obtain Cin (x) as an infinite series,

. x? x* x®
Cln(x)=m_m+8?g_-... (19)

While discussing Cin (x) and Ci {x), mention may be made of another inte-

gral which commonly occurs in impedance calculations, This is the sine integral, ~ 1§

8i (x), given by

. * sin » : x} %3
Sl(x}='[) " duzx—m_f-g-!—s_“. (20)

When x is small (x < 0.5),
Si (x) = x 21)

rd
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Figure 5-12b  Sine integral.

When x is large (x » f},

_COSI (22}
X

Si{x) =~

L]

A curve of the sine integral as a function of x is presented in Fig. 5-12b. It is to be
noted that Si {x) converges around n/2 at large values of x.
Returning now to (13), this can be written as

Ro=30Cin(2m) =30 x 244 =73 00 (23)

This is the well-known value for the radiation resistance of a thin, linear, center-
fed, A/2 antenna with sinusoidal current distribution. The terminal impedance
also includes some inductive reactance in series with R, (see Chap. 10). To make
the reactance zero, ic., to make the antenna resonant, requires that the antenna
be a few per cent less than A/2. This shortening also results in a reduction in the
value of the radiation resistance.

5-7 RADIATION RESISTANCE AT A POINT WHICH IS NOT
A CURRENT MAXIMUM. If we calculate, for example, the radiation
resistance of a 34/4 antenna (see Fig. 5-8) by the above method, we obtain its
value at a current maximum. This is not the point at which the transmission line
is connected. Neglecting antenna losses, the value of radiation resistance so
obtained is the resistance R, which would appear at the terminals of a transmis-
sion line connected at a current maximum in the antenna, provided that the
current distribution on the antenna is the same as when it is center-fed as in
Fig. 5-8. Since a change of the feed point from the center of the antenna may
change the current distribution, the radiation resistance R, is not the value which
would be measured on a 34/4 antenna or on any symmetrical antenna whose
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Figure 513 Relation of current I, at (ransmission-line terminals (0 cutrent
I, at current maximum.

length is not an odd number of i/2. However, R, can be casily transformed to the
value which would appear across the terminals of the transmission line connected
at the center of the antenna.

This may be done by equating (5-6-3) to the power supplied by the trans-
mission line, given by 1{R,/2, where I, is the current amplitude at the terminals
and R, is the radiation resistance at this point {(see Fig. 5-13). Thus,

_.R1=_Ro (1)

where R, is the radiation resistance calcuiated at the current maximum. Thus, the
radiation resistance appearing at the terminals is

R = Tl— R, {2)

The current [, at a distance x from the nearest current maximum, as shown in
Fig. 5-13,is given by

i, =1, cos Bx (3)

where I, = terminal current
Iy = maximum current

Therefore, (2) can be expressed as

Ry

R =——F
17 cos? Bx

@)
When x = 0, R, = Ry; but when x = 4/4, R, = oo if Ry # 0. However, the radi-
ation resistance measured at a current minimum (x = 4/4) is not infinite as would
be calculated from (d), sinceé an actual antenna is not infinitesimaily thin and the
current at a minimum point is not zero. Nevertheless, the radiation resistance at
a current minimum may in practice be very large, ie., thousands of ohms,

S8 FIELDS OF A THIN LINEAR ANTENNA WITH A
UNIFORM TRAVELING WAVE. The foregoing discussion has been
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Relative
current

Distance along antenna

Relative

phase . ] )

arngle Wavel arecnon Figure 5-14 Current amplitude and phase relations

(lag} o= wewme—— ———————————— along un anlenna carrying a single uniform (raveling
Distance along antenna wave,

confined to the case of antennas with sinusoidal current distributions. This

current distribution may be regarded as the standing wave produced by two

uniform {unattenuated) traveling waves of equal amplitude moving in opposite

dircctions along the antenna. Tf, however, only one such wave is present on the -
antenna, the current distribution is uniform. The amplitude is a constant along

the antenna, and the phase changes linearly with distance as suggested by

Fig. 5-14.

The condition of a uniform traveling wave on an antenna is ene of con-
siderable importance, as this condition may be approximated in a number of
antenna systems. For example, a single-wire antenna terminated in its character-
istic impedance, as in Fig, 5-154, may have essentially a uniform traveling wave.!
This type of antenna is often referred to as a Beverage or wave antenna. A ter-
minated rhombic antenna (Fig. 5-15b) may also have essentially a single traveling
wave. The Beverage and rhombic antennas are discussed further in Chap. 16.
Other types of antennas that have, in the first approximation, a single outgoing
traveling wave, are a long monofilar axial-mode helical antenna and a long, thick
linear antenna as illustrated in Fig, 5-15¢ and d. These antennas have no termina-
ting impedance but behave in a' similar way to terminated antennas. Thus, the
thick linear conductor has a current distribution similar to a thin terminated
linear conductor, and the patteras are similar if the conductor diameter is not tog
large. The results for a traveling wave on a linear conductor can be applied to a
helix, as shown in Chap. 7, by considering that the helix consists of a number of
short linear segmegnts. On the linear antennas, the phase velocity of the traveling
wave is substantially equal 1o the velocity of light. However, the phase velocity
along the conductor of a monofilar axial-mode helical antenna may differ appre-
ciably from the velocity of light. Hence, to make the results applicable to any of
the antenna types shown in Fig. 5-15, the fields from an antenna with a traveling

! Since the fields of an antenna are not confined to the immediate vicinity of the antenna, it is not
possible to provide a nonreflecting termination with a lumped impedance. However, a lumped imped-
ance may greatly reduce reflections at the termination.
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:

rTerminated single wire antenna

Wave

@ |

Wave/'

(h)

Wavﬁ

Terminated rhombic antenna

L

2000000000 .

€} Long helical antenna

{d) l Long thick linear antenna

wave will be developed for the general case where the phase velocity v of the
wave along the conductor may have any arbitrary value.!

Proceeding now to find the field radiated by a traveling wave on a thin
linear conductor, let us consider a conductor of length b coincident with the z
axis and with one end at the origin of a cylindrical coordinate system (p, {, z) as
in Fig. 5-16. It is assumed that a single, uniform traveling wave is moving to the
right along the conductor.

Since the current is entirely in the z direction, the magnctic field has but one
component H Iz The ¢ direction is normal to the page at P in Fig 5-16, and its
positive sense is outward from the page. The magnetic field H, can be obtained
from the Hertz vector T1. Since the current is entirely in the z direction, the Hertz

Figure 515 Various antennas having essentially
a single iraveling wave.

! A, Alford, “A Discussion of Methods Employed in Calculations of Eleciromagnetic Fields of Radi-
ating Conductors,” Elec. Commun., 15, 10-88, July 1936, Treats case where velocity is equal to light.

). D. Kraus and J. C. Williamson, “ Characteristics of Helical Antennas Radiating in the Axial Mode,”
J. App. Phys., 19, 87-96, January 1948, Treals gencral case.

J. Grosskopf, = Ober die Verwendung zweicr Losungsansiitze der Maxwellschen Gleichungen bei der
Berechnung der electromagnetischen Felder strahlender Leiter,” Hochfrequenztechnik und Electro-
akustik, 49, 205211, Junc {937. Treats casc where velocity is equal to light.
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Plo £ D

0 Figure 5-16 Relation of conduclor of length &
Wave with single traveling wave to cylindrical coor-
Conductor direction dinate system.

vector has only a z component. Thus,

(H

= jowe(V x IT), =

where I1 is the z component of the retarded Hertz vector at the point P, as given
by :

]. b
m=— J. ., @
dnjewe o T
where {I1=1,sin m(t - E - Z:‘) (3}

where z, = a point on the conductor

and v=pc or p=

{4)

ool

In (4), p is the ratio of the velocity along the conductor v to the velocity of light c.
This ratio will be called the relative phase velocity.

Al the conditions required for calculating the magnetic field due to a single
traveling wave on the linear conductor are contained in the relations (1) through
(4). That is, if [{] in (3) is substituted into {2} and I1, from this equation into {1}
and the indicated operations performed, we obtain the field H,. Let us now
proceed to carry through this calculation. To do this, let

r Zy

=1t 5)
C v

Now since
r=[z —z,)* + p*1'? (6
we have
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Equation (2) now becomes

I,e [ sin wu
m, =2
* dmjoe J:; z—zy—(r/p) du @
where the new limits are
- ry r, b
Uy =t —— d =f—-—=—
. N 1 . an tiy e (9
_Intr(_)dg_:ucing (8) into {1) we have
Inc @ ["* sin wu
8 dn op L z—2z, —(r/p) du : (10)

Confining our attention now to the far field, ie., at a large distance r, which is
very much larger-than b, the quantity z; can be neglected and the denominator of
the Integrand considered to be a constant z — (r/p). Therefore (10) becomes

- dne dp z —(r/p) (1)

Performing the differentiation with respect to p, (11) becomes

g @ [—cos Wy + Cos wul]

Y {[z — {t/p)](sin wu,; — sin wu,) + [A/(2np))(cos wn, — cos wu,) 12
foamr [z — (/o)) 12
At arbitrarily large distances, i.e., where

y &
2np

-
z - =
4

and for the case where
sin wi; — sin ou, £ 0
(12} reduces to
o _sing
¢ 4ar cos ¢ —{1/p)
where the relations have been introduced for r 3 b that

(sint eou, — sin wu,) (13)

™ I H

= Cos ¢ and ;p = sin ¢ {14)

Intrt?dncing the values of u, and u, into (13) from (9) and by trigonometric
manipulation, (13) can be put in the form

_fop sing [ wb
Hg = 21!1'1 {m S [ﬂ {1 — P COs ¢}]}

1 wb
[o=2)-5ee-sema] s
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p=1.0 p=08 p=06

Wave

direction
L —p

(@} 3 {)

Figure 5-17 Far-field patterns of linear 4/2 antenna carrying a uniform traveling wave (to right) for
three conditions of relative phase velocity (p = 1.0, C.8 and 0.6} The tilt angle 1 and the half-power
beamn widths are indicated for each pattern.

Equation (13) gives the instantaneous magnetic field at large distances from
the linear antenna carrying a single traveling wave of amplitude I,, in terms of
the distance r,, direction angle ¢, relative phase velocity p, radian frequency o,
conductor length b, time ¢ and velocity of light c. The distant or far electric field
E, is obtained from H by E, = H,Z,where Z = 377 Q.

In (15} the shape of the field pattern is given by the expression in the braces
! }. The expression indicated as an angle . gives the phase of the field referred
to the origin of the coordinates (see Fig. 5-16) as the phase center. The relative
phase pattern at a constant distance is given by the right-hand term, [wh/{(2pc))
{1 — pcos ¢).

Several examples will now be considered to illustrate the nature of the field
patterns obtained on linear conductors carrying a uniform traveling wave.

5-8a Case 1. Linear /2 Antenna. Let us consider a linear antenna, i/2 long
as measured in free-space wavelengths. Thus, assuming that p = 1, the phase
velocity along the antenna is equal to that of light and the pattern calculated
from (15} is as shown by Fig. 5-17a. The difference between this pattern and that
for a linear A/2 antenna with a sinusoidal current distribution or standing wave
{Fig. 5-10Qa) is striking. The lobes are sharper and also tilted forward in the case
of the traveling wave antenna (Fig. 5-17a). The tilt is in the direction of the trav-
eling wave. The tilt angle 7 of the direction of maximwm radiation is 25° and the
beam width between half-power points is about 60°. This is in contrast to t = 0
and a beam width of 78° for the 1/2 antenna with a sinusoidal current distribu-
tion or standing wave.
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PROBLEMS'
*5.1 Electric dipole.

p=1.0

Wave {a) Two equal static electric charges of opposite sign separated by a distance L
.. direction constitute a static electric dipole. Show that the eleciric potential at a distance r

from such a dipole is given b

T pole is given by
: QL cos 8
y==""7

dner?
i ~ f li A ant . , Lo .
25:;::tni;mﬁ:::veﬁ::e‘::v:(p ]:TT 34 actenna where { is the magnitude of each charge and # is the angle between the radivs r
and the line joining the charges (axis of dipole). It is assumed that » is very large
compared to L.

{b) Find the vector value of the electric field E at a large distance from a static

electric dipole by taking the gradient of the potential expression in part (a).

As the phase velocity of the traveling wave on the 4/2 antenna is reduced,
the tilt angle is increased and the beam width reduced further, as illustrated by
the patterns of Fig. 5-17b and ¢, which are for the cases of p'= 0.8 and p =056 ] . o oL
respectively. - 52 2i antemna. Thel instantaneous current distribution of a thin linear center-fed

antenna 24 long is sinnsoidal as shown in Fig. P5-2

{ay Calculate and plot the pattern of the far fieid.
{by What is the radiation resistance referred to a current loop?
{¢) What is the radiation resistance at the transmission-line terminals as shown?

{4} What is the radiation resistance A/8 rom a current loop?

58b Case 2. Linear Antenna 51 Long. The field pattern for a 54 linear
antenna with a single traveling wave is presenied in Fig. 5-18 for the case where
p=1 (that is, v = ¢). This pattern is typical of those for long, terminated
antennas, the radiation being beamed forward in a cone having the antenna as its
axis. The tilt angle for this antenna is about 68°

. Lo\ |
Ny tH S

Figure P52 2 antenna.

£8c Case 3. Linear Antennas 1/2 to 254 Long. As the length of the antenna
is increased the tilt angle increases further, reaching about 78° (12° from antenna}
when the length is 204 for p = 1. The variation of the angle of the conical beam
from the antenna is shown in Fig. 5-19 as a function of the antenna length for a
wave traveling at the velocity of light (p = 1). Note that « in Fig. 5-19 is the

*5-3  1/2 antenna. Assume that the current is of uniform magnitude and in phase along
complement of the tilt angle 1, that is, ¢ = %0° — 1.

the entire length of a 1/2 thin linear element.
‘(@) Calculate and plot the pattern of the far field.
(b). What is the radiation resistance?

70" (c) Tabulate for comparison:
80" 1. Radiation resistance of part (b) above
50 2. Radiation resistance at the current loop of a A/2 thin linear element with
401 & sinusoidal in-phase current distribution
5 L ®Antenna 3. Radiation resistance of a 4/2 dipale calculated by means of the short dipole
:. Kivy o tength, L, formula
> 25% {d) Discuss the three results tabulated in part (c) and give reasons for the differ-
< ok ences.
159— 5.4 }/2 antennas in echelon. Calculate and plot the radiation-field pattern in the plane
of two thin linear /2 antennas with equal in-phase currents and the spacing
104 I I L1 L4 1Lt 1 relationship shown in Fig. P5-4. Assume sinusoidal current distributions.
0.5 1 2 3 4 567810 15 20 30 '

Length L,

Figure 5-19 Angle « of main beam maximum from a linear traveling wave antenna as a function of

antenna length in wavelengths {L,} with v = ¢ {p = 1) for antennas 4/2 to 254 long. ! Answers to starred (*) problems are given in App. D
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Figare P54 i/2 antennas in echelon.

17 antenna with standing wave. Calculate the field pattern in the plane of the 14
antenna shewn in Fig. P5-5. Assume that the current distribution on each wire is
sinusoidal and that all currents are in phase. Plot the pattern,

N2

—
0°
”_,....--‘-‘-’\|2 )-/2
‘-h...\

Figure PS5 1+ antenna with standing wave,

11 and [0 antennas with traveling waves.

{a) Calculate and plet the far-field patiern in the plane of a thin linear element 1.4
long, carrying a single uniform traveling wave for 2 cases of the relative phase
velocity p = 1 and 0.5.

(h) Repeat for the single case of an element 104 long and p = 1.

Isotropic antenna. Radiation resistance. An omnidirectional (isotropic) antenna has a
field pattern given by £ = 104/r (V m™'), where { = terminal current {A) and
7 = distance (m). Find the radiation resistance.

Short dipole. For a thin center-fed dipole 4/15 long find (a) directivity D, (b) gain G,
() effective aperture A,, (4) beam solid angle 2, and (e) radiation resistance R,.
The antenna current tapers linearly from its value at the terminals to zero at its
ends. The toss resistance is 1 1),

Conical pattern. An antenna has a conical field pattern with uniform field for zenith
angles (4) from 0 to 60° and zero field from 60 to 180°. Find exactly (a) the beam
solid angle and (b} directivity. The pattern is independent of the azimuth angle {¢).

Conical pattera. An antenna has a conical field pattern with uniform field for zenith
angles (4) from O to 45° and zero field from 45 to 180°. Find exactly (a) the beam
§olid angle, (b} directivity and (c) effective aperture. {d) Find the radiation resistance
if the field E = 5 V m~* at a distance of 50 m for a terminal current { = 2 A (rms).
The pattern is independent of the azimuth angle (4).

Directional pattern in 8 and ¢. An antenna has a uniform field pattern for zenith
angles (6) between 45 and 90° and for azimuth (¢) angles between 0 and 120°, I
E'=3 ¥ m™! at a distance of 500 m from the antenna and the terminal current is
5_A, find the radiation resistance of the antenna. E = 0 except within the angles
given above,

Directional pattern in ¢ and ¢. An antenna has a uniform field £ = 2 V m~! (rms)
at a distance of 100 m for zenith angles between 30 and 60° and azimuth angles ¢
bt}then 0 and 90° with E = 0 eisewhere. The antenna terminal current is 3 A (rms).
Find (a) directivity, (b} effective aperture and (¢} radiation resistance.

*5-13

514

515

516

517
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Directional pattern with back lebe. The field pattern of an antenna varies with
zenith angle {0} as follows: E, {(=FE_, naized) = 1 between 8 = 0° and 6 = 30° (main
lobe), E, =0 between #=30° and 8 =90° and £, =4 between 6 =90° and
8 = 1807 {back lobe). The pattern is independent of azimuth angle (¢}. {@) Find the
exact directivity. (b) If the field equals 8 ¥ m™' {rms)} for 8§ = 0" at a distance of
200 m with a terminal current § = 4 A {rms), find the radiation resistance.

Short dipole. The radiated field of a short-dipole antenna with uniform current is
given by |E|=308i(I/r) sin 6, where ! = length, I = current. r = distance and
0 = pattern angle. Find the radiation resistance.

Equivalence of pattern factors. Show that the field pattern of an ordinary end-fire
array of a larpe number of colinear short dipoles as given by {4-6-8), muitiplied by
the dipole pattern sin ¢, is equivatent to {5-8-15) for a long linear conductor with
traveling wave for p = 1.
Relation of radiatiom resistance to beamn area. Show that the radiation resistance of
an antenna is a function of its beam area 2, as given by

R =

, ?94

where § = Poynting vector at distance r in direction of pattern maximum

1 = terminal current
Cross-field. Find the iocations in the field of a short dipole where circular cross-field
exists.




CHAPTER

6

THE
LOOP
ANTENNA

This chapter is devoted to the loop antenna. First, the field pattern of a small
loop is derived very simply by considering that the loop is square and consists of
four short linear dipoles. The same field equations are then developed by a some-
what longer method based on the assumption that the small loop is equivalent to
a short magnetic dipole. Finally, the general case of the loop antenna with
uniform current is treated for loops of any size. Although most of the develop-
ment concerns circular loops, square loops are also discussed, and it is shown
that the far fields of circular and square loops of the same area are the same when
they are small but different when they are large in terms of wavelength.

6-1 THE SMALL LOOP. A very simple method of finding the field
pattern of a small loop is treated in this section. Consider a circular toop of
Fadius a with a uniform in-phase current as suggested by Fig. 6-1a. The radius @
1s very small compared to the wavelength {a < 1). Suppose now that the circular
loop is represented by a square loop of side length d, alse with a uniform in-
phase current, as shown in Fig. 6-1b. In this way, the loop can be treated as four
short linear dipoles, whose properties we have already investigated in Chap. 5.
Lf:t d be chosen so that the area of the square loop is the same as the area of the
circular loop; that is,

d* = na* )

If the lqop is oriented as in Fig. 6-2, its far electric field has only an E,
comporent. To find the far-field pattern in the yz plane, it is only necessary to
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eSl==

(a} [¢:3] Figore 6-1  Circular loop (2) and square loop (h}.

consider two of the four small linear dipoles (2 and 4). A cross section through
the loop in the yz plane is presented in Fig. 6-3. Since the individual small dipoles
2 and 4 are nondirectional in the yz plane, the field pattern of the loop in this
plane is the same as that for two isotropic point sources as treated in Sec, 4-2.
Thus,

E, = —Eg0e™? + Egge ¥ 2)
where E,, = electric field from individual dipole and
=¥sin9=d,_sin9 (3
It foilows that
E, - —2jE 44 sin (% sin ﬂ) 4

The factor j in (4) indicates that the total field E, is in phase quadrature with the
field E,, of the individual dipole. This may be readily seen by a vector construc-
tion of the type of Fig. 4-1b of Chap. 4. Now if d <€ A, (4) can be written

E,= —jE,d. sinD (5)

Square { 4
loop

. Figare 6-2 Relation of square loop fo coordi-
X nates.



240 ¢ THE LOOP ANTENNA

pd To distant
point
i
i 4
Dipole \/

ot __,.I‘Dipole 2 4

Figure 6-3 Construction for finding far hield of dipoles 2 and 4 of square loop.

The far field of the individual dipole was developed in Chap. 5, being given in
Table 5-1. In developing the dipole formula, the dipole was in the z direction,
whereas in the present case it is in the x direction (see Figs. 6-2 and 6-3). The
angle @ in the dipole formula is measured from the dipole axis and is 90° in the
present case. The angle 8 in (5} is a different angle with respect to the dipoie,
being as shown in Figs. 6-2 and 6-3. Thus, we have for the far field Eyp of the

individual dipole

_ j60n[11L

ra

Eun

where [1] is the retarded current on the dipole and r is the distance from the
dipole. Substituting (6) in (5) then gives

_ 60n[I]Ld, sin 0

rA

E,

(7}
However, the length L of the short dipole is the same as d, that is, L = 4. Noting
also that d, = 2xd// and that the area 4 of the foop is d2, (7) becomes

_1202°[1] sin @ A

E, 3 8

r A
This is the instantaneous value of the E, component of the far field of a small
loop of area 4. The peak value of the field is obtained by replacing /] by 1,,
\"Fhere 1, is the peak current in time on the loop. The other component of the far
field of the loop is Hy. which is obtained from (8) by dividing by the intrinsic
Impedance of the mediurm, in this case, free space. Thus,

E afflsinf A
-2 _Tilsmé A
" t20n r il ©)

)
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6-2 THE SHORT MAGNETIC DIPOLE. EQUIVALENCE TO A
LOOP. Another method of treating the small loop is by making use of its
equivalence to a short magnetic dipole. Thus, a small loop of area A and carrying
a uniform in-phase electric current 7 is replaced by an equivatent magnetic dipole
of length ! as shown in Fig. 6-4a. The magnetic dipole is assumed to carry a
fictitious magnetic current f .

The relation between the loop and its equivalent magnetic dipole wil! now
be developed. The moment of the magnetic dipole is g, ! where g, is the pole
strength at each end as in Fig. 6-4b. The magnetic current is related to this pole
strength by

dq
fo=—p—> 1
m B {1)
where I, = [_, &t
Integrating (1) with respect to time,
1
= @
4 Jeop

The magnetic moment of the loop is I4. Equating this to the moment of the
magnetic dipole, we have

anl = 1A 3
Substituting (2) in (3),
I
o= -4 (4)
jou
This may be reexpressed as
'. Z;
Iol= —jould = —j2nf f ulA = —j2n "2 14 (s)
A
or Inl= 2400’1 5 (6}
In retarded form (6) is
, 2rp A
1,01 = —j2402[1) & ™

where [Im] = !mo ejm[: - trich]

[f] — ‘fo ejw[t—[r,n’rl]-

G
r’ ”Tf

"9 Figore 54 (a) Refation of small loop of area A 1o short
C b magnetic dipote of length 1. (4) Short magnetic dipole.
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Equations (6) and (7) relate a loop of area A and carrying a current [ to its
equivalent magnetic dipole of length ! carrying a fictitious magnetic current I,,.

6-3 THE SHORT MAGNETIC DIPOLE. FAR FIELDS. In this
section the far fields of a short magnetic dipole will be calcutated. Then applying
the equivalence relation between a loop and magnetic dipole developed in Sec.
6-2, we obtain the far field of a small circular lcop.

The method of finding the fields of a short magnetic dipole is formally the
same as that employed in Sec. 5-2 to find the far field of a short electric dipole.
The only difference is that electric current [ is replaced by a fictitious magnetic
current [, and that E is replaced by H. Then with the magnetic dipole oriented
as in Fig. 6-5, the retarded vector potential F of the magnetic current is

+ii2
Fzﬁ.”.j'&],mldv:iij Unl f v2sa-tmy (1)
- 4n r 4n

-2 r

The vector potential ¥ has only a z component F, . Introducing the valug of the
retarded current

. +12 jralr — {ric)]
F = @ .[ _e;’____ dz (2)

T 4q

Sz r

If r » [ and 1 > I, the phase difference of the contributions of the various current
elements of length dz along the magnetic dipole can be neglected. Hence, the
integrand in {2} may be regarded as a constant, and {2} becomes

I gielt = trio]
F, = Hlmole” = " 7 3}
dur -
The electric field E is obtained from F by the relation
!
E=—VxF (4
H

[

Figure 65 Relation of short magnetic dipale to
coordinates.
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Resolving F_ into its spherical or polar coordinate compenents Fp and F, and
taking the curl of F as in {4), the E, component of the electric field is found to be

r, - Usllsn (1o, 1) 5

4n cror

This is the only component of the electric field produced by a magnetic dipole
oriented as in Fig. 6-5. It is intcresting to note that (5) is identical with the
expression for H, developed for a short electric dipole, provided that E in (5) is
replaced by H and I, by I (see Table 5-1).

The relation of (5) applies at any distance from the magnetic dipole, provid-
ed only that r » T and 1 3 L. At a large distance r the second term of {5} can be
neglected, and (5) becomes

_JUJwisin 8 j[I,] sin 81

E
¢ drcr 2r A

(6)

This is the far electric field from a short magnetic dipole of length ! and carrying
a fictitious magnetic current I,,. The far magnetic field H, of the magnetic dipole
is related 1o E, by the intrinsic impedance of the medium, in this case, free space.
Hence

jlI.] sin 8}
g, =ii=lsnb !
¢ =" 240mr i ™

Substituting (6-2-7) for the moment {1,,]1 in (6) and {7), we obtain

120 sin @ A

B 7 @)

_alllsin & 4

and H, 3 &)

r A

These are then the far-field equations in a plane perpendicular to a small
loop of area A carrying a current I. They are identical with (6-1-8) and {6-1-9)
developed in Sec. 6-1 by the method using a square loop of four short linear
electric dipoles. The field pattern in the plane of a circular loop with uniform
current is by symmetry a circle. The far-field pattern in the plane of a small
square loop with uniform cusrent may also be shown to be a circle (Prob. 6-6).
Thus, it appears that the far fietds of smalf circular and square loops are identical
provided that both have the same area.

Both E, and H, vary as the sine of the angle # measured from the polar axis
as illustrated in Fig. 6-6. The fields are independent of ¢. Hence, the space pat-
terns are figures-of-revolution of the pattern of Fig. 6-6 around the polar axis, the
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Polar
anis

/)

form being that of a doughnut. This pattern is identical in shape to that of a
short electric dipole oriented parallel to the polar or z axis.

Figure 66 Far-field pattern for a small loop.

6-4 COMPARISON OF FAR FIELDS OF SMALL LOOP AND
SHORT DIPOLE. 1t is of interest to compare the far-field expressions for a
small {oop with those for a short electric dipole. The comparison is made in
Table 6-1. The presence of the operator j in the dipole expressions and its
absence in the loop equations indicate that the fields of the electric dipole and of
the loop are in time-phase quadrature, the current I being in the same phase in
both the dipole and loap. This quadrature relationship is a fundamental differ-
ence between the fields of loops and dipoles. See Prob. 6-9.

The formulas in Table 6-1 apply to a loop oriented as in Fig. 6-2 and a
dipole oriented parallel to the polar or z axis. The formulas are exact only for
vanishingly small lcops and dipoles. However, they are good approximations for
loops up to 4/10 in diameter and dipoles up to 4/10 long.

6-5 THE LOOP ANTENNA. GENERAL CASE. The general case of a
loop antgnna with uniform, in-phase current will now be discussed. The size of
the loop is not restricted to a small value compared to the wavelength as in the

Table 6-1 Far fields of small electric dipoles and

loops
Field Electric dipole Loop
Electric g, LSO L 120271 sin 6 A
r A ¢ r Al
Maguetic g, —JL1sn 8L al)sin6 4
r 4 ¢ r a2
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Figure 6-7 Loop of any radius a with rela
¥ tion to coordinates.

preceding sections but may assume any value. The methed of (reatment follows
that given by Foster.'

Let the loop of radius ¢ be located with its center at the origin of thé
coordinates as in Fig. 6-7. The current f is uniform and in phase around the loop,
Although this condition is readily obtained when the loop is small, it is not a
natural condition for large loops energized at a point. For loops with perimeters
of about 4/4 or larger, phase shifters of some type must be introduced at intervals
around the periphery in order to approximate 4 uniform, in-phase current on the .
loop. Assuming that the current is uniform and in phase, the far-field expressions
will be derived with the aid of the vector potential of the electric current. The
vector potential will first be developed for a pair of short, diametrically opposed
electric dipoles of length @ d¢, as in Fig. 6-7. Then integrating over the loop, the
total vector potential is obtained. and from this the far-field components are
derived.

Since the current is confined to the loop, the only component of the vector
potential having a value is 4, . The other components are zero: 4 = A, = 0. The
infinitesimal value at the point P of the ¢ component of 4 from two diametrically

' Donald Foster, * Loop Antennas with Uniform Current,” Proc. [RE. 32, 603-607, October 1944, A
discussion of circular loops of circumference less than 4/2 {C, < 4) with nonuniform current distribu-
lion is given by G. Glinski, " Note on Circular Loop Antennas with Nonuniform Current Distribu-
tion,” . Appl. Phys., 18, 638644, July 1947
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Figure 6-8 Cross seciion o x2 plane

Perimeter of loop through loep of Fig. 6-7.

opposed infinitesimal dipoles is

udM

dA, = (n

wh.erc dﬂ?‘ is the current moment due to one pair of diametrically opposed infini-
tesimal dipoles of length, @ d¢. In the ¢ = 0 plane (Fig. 6-7) the ¢ component of
the retarded current moment due to one dipole is

[{]a dp cos ¢ 2)

where [I] = 15" %N 4nd [ is the peak current in time on the loop.

Figure 6-8 is a cross section through the loop in the xz plane of Fig. 6-7.
Referring now to Fig. 6-8, the resuitant moment dM at a large distance due to a
pair of diametrically opposed dipoles is

dM = 2i[a d¢ cos ¢ sin % 3

where i = 2fa cos ¢ sin @ radians
Introducing this value for y into (3) we have
dM = 2j[a cos ¢ [sin (fa cos ¢ sin 8)] d¢ (4)

Now substituting (4) into (1) and integrating,

Ay = J_’%[R{}‘f jKSin (Ba cos ¢ sin 0) cos ¢ d¢ )
]
or 4, = g pasing ©
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where J, is a Bessel function of the first order and of argument (fa sin 6. The
integration of (5} is performed on equivalent dipoles which are all situated at the

" origin but have different otentations with respect to ¢. The retarded current {J]

is referred to the origin and, hence, is constant in the integration.
The far electric field of the loop has only a ¢ component given by

E, = —jwd, 7
Substituting the value of 4, from (6) into (7) yields

el lla
Eo = 2r

_ 60rfial I
r

J(Basin &) %)

or E, J,(fa sin 6} {9

This expression gives the instantaneous clectric field at a large distance r
from a icop of any radius a. The peak value of £, is obtained by putting [] =
I, where I is the peak value (in time) of the current on the loop. The magnetic
field H, at a large distance is related to £, by the intrinsic impedance of the
medium, in this case, free space. Thus,

_ pall]

H
8 2r

Jiifa sin 8) {10)

This expression gives the instantaneous magnetic field at a large distance r from a
loop of any radius a.

6-6 FAR-FIELD PATTERNS OF CIRCULAR LOOP ANTENNAS
WITH UNIFORM CURRENT. The far-field patterns for a loop of any size
are given by (6-5-9) and (6-5-10). For a foop of a given size, fa is constant and the

shape of the far-field pattern is given as a function of # by

J{C, sin ) {1}

where C; is the circumference of the loop in wavelengths. That is,
Ci=—"=fa 2

The value of sin § as a function of 8 ranges in magnitude between zero and unity.
When € = 90°, the relative field is J,(C,), and as # decreases to zero, the values of
the relative field vary in accordance with the J, curve from J,{C,) to zero. This is
illustrated by Fig. 6-9 in which a rectified first-order Bessel curve is shown as a
function of €, sin 0.

As an example, let us find the pattern for a loop 14 in diameter (C, = n =
3.14). The relative field in the direction 8 = 90° is then 0.285. As § decreases, the
field intensity rises, reaching a maximum of 0.582 at angle 9 of about 36°. As 8
decreases further, the field intensity alse decreases, reaching zero at # = 0°. The
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Figare 6-9  Pattern chart lor loops with uniferm current as given by first-order Bessel curve us a
function of C; sin 8.
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Figure 6-10 Far-field patierns of loops of 0.1, 1, 1.5, 5 and 8.4 diameter. Uniform in-phase current is
assumed on the loops.
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pattern in the other four quadrants is symmetrical, the complete pattcrn being as
presented in Fig. 6-10b.

It is possible to obtain the pattern by a graphical construction. This is
illustrated for the case we have just considered of C; = n by the auxiliary circle
quadrant in Fig. 6-9. The angle # is laid off around the arc of the circle. The
radius of the circle is equal to C, sin 90° = C,, which in this case is 7. The field
in the direction # = 607, for instance, is then given by drawing a perpendicular to
the axis of the abscissa and continuing this perpendicular until it intersects
the J, curve, giving a value of relative field, in this case, of 0.443, as shown in
Fig. 6-9.

Turning now to a consideration of foops of other size, it is to be noted from
Fig. 6-9 that the maximum ficld is in the direction & = 907 for all loops which are
less than 1.844 in circumference (less than 0.585. in diameter). As an example, the
pattern for a loop 4/10 in diameter is presented in Fig. 6-10a. The pattern is
practically a sine pattern as would be obtained with a very small loop,

By way of contrast, the pattern for a loop 54 in diameter is shown in Fig,
6-10d. In this case, which is typical for large circular loops with uniform current,
the maximum ficld is in a direction nearly normal to the plane of the ioop, while
the field in the direction of the plane of the loop is small.

All patterns in Fig. 6-10 are adjusted to the same maximum. The space
patterns for the five cases in Fig, 6-10 are figures-of-revolution of the patterns
around the polar axis. It is to be noted that the field exactly normal to the loop is
atways zero, regardless of the size of the loop.

6-7 THE SMALL LOOP AS A SPECIAL CASE. The relations of
(6-5-9) and {6-5-10) apply to loops of any size, 1t will now be shown that for the
special case of a small loop, these expressions reduce to the ones obtained pre-
viously,

For small arguments of the first-order Bessel function, the following
approximatc relation can be used:*

X

Ji(x)= 3 (1

where x is any variable. When x = 4, the approximation of (1) is about i percent
in error. The relation becomes exact as x approaches zere. Thus, if the perimeter
of the loop is 4/3 or less (C; < §), (1) may be applied to (6-5-9) and (6-5-10) with
an error which is about 1 percent or less. Equations (6-5-9) and (6-5-10) then

! For small arguments, the J, curve is nearly linear (sce Fig. 6-9). The general relation for-a Bessel
function of any order n is £ (x) = x"/n' 2" where | x| < 1.
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Figure 6-11 Loop and transmission line.

become
60npa{I1fa sin 8 120a°(1] sin 0 4 >
E, = : = = {2}
¢ 2r r i
H, = Bal ffa sin § _ n[f] sin # iz 3
4r r A

These far-field equations for a smal! loop are identical with those obtained in
earlier sections {see Table 6-1).

6-8 RADIATION RESISTANCE OF LOOPS.' To find the radiation
resistance of a loop antenna, the Poynting vector is integrated over a large sphere
yielding the total power P radiated. This power is then equated to the square of
the effective current on the loop times the radiation resistance R,

—
-

P=2R, )

r|

where I, = peak current in time on the loop. The radiation resistance so
obtained is the value which would appear at the loop terminals connected to the
transmission line, as shown in Fig. 6-11. The situation shown in Fig. 6-11 occurs
naturally only on small loops. However, it will be assumed that the current is
uniform and in phase for any radius a, this condition being obtained by means of
phase shifters, multiple feeds or other devices (see Fig. 16-19). The average Poyn-
ting vector of a far field is given by

S, =4|H|*Re Z (2

where | H | is the absolute value of the magnetic field and Z is the intrinsic imped-

! The procedure follows that given by Dondid Foster, * Loop Antennas with Uniform Currem. Proc.
IRE, 32, 603-607, October 1944,
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ance of the medium, which in this case is free space. Substituting the absolute
value of Hy from (6-5-10) for { H | in {2) yields

15 15
5, = "‘B 200 y2Ba sin ) (3)
The total power radiated P is the integral of 5, over a large sphere; that is,

x ‘=

P= J‘-[ S, ds = 15n(Bal ) f j J%(fa sin 0) sin 9 49 dé (4)
o Jo

or P = 30nX(Bal,)? J J¥(Ba sin 8) sin 8 dB (5)

0

In the case of 4 loop that is small in terms of wavelengths, the approx-
imation of (6-7-1} can be applied. Thus (3) reduces to

15

P == a{pa)]l} J sin® 8 df = 10n2f*a*12 )
1]

Since the area A = ma®, (6) becomes

P = 108413 (7

Assuming no antenna losses, this power equals the power delivered to the loop
terminals as given by (1). Therefore,

IZ
R, —29 = 1084712 (8)
A 2
and R, =31 m(ﬁ) =197C¢% (&) )]
A 2
or _ R, ~ 31 200(?) Q) (10)

This is the radiation resistance of a small single-turn loop antenna, circular or
square, with uniform in-phase current. The relation is about 2 percent in error
when the loop perimeter is 4/3. A circular loop of this perimeter has a diameter of
about A/10. Its radiation resistance by (£0) is nearly 2.5 Q.

The radiation resistance of a small loop consisting of one or more turns is
given by!

R =31 200(:: %) )

where # = number of turns

'A. Alford and A. G. Kandoian, “ Ultrahigh-Frequency Loop Antennas,” Trans. ATEE, 59, §43-848,
1940.
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_ Let us now proceed to find the radiation resistance of a circular loop of any
radius «. To do this we must integrate (5). However, the integral of (5) may be
reexpressed. Thus, in general,!

n ) ) 1 2x
ij{x sin 9) s:nﬁdﬂ:-—f J100) dy {11}
0 X Jo

where y is any function

Applying (11) to (5) we obtain

2pa
P = 30x2Ball J Jo(y) dy (i2)
[H

quating {12) and {1) and putting fa = C'; yields
20,
R, = 60n°C, j Ldy @ (13)
L1
Tbis is .lhe radiation resistance as given by Foster for a single-turn circular loop
with uniform in-phase current and of any circumference ;.
When the loop is large (C, > 5), we can use the approximation
20
J‘ Jaly) dy =~ 1 {14}
0
so that {13} reduces to
R, = 6072C, = 592C, = 3720 2 (15)
i

For a loop of 104 perimeter, the radiation resistance by (15) is nearly 6000 Q.

For values of C; between 4 and 5 the integral in (13) can be evaluated using
the transformation :

20, 205
.[ Jolyy dy = J- Joly) dy — 2J,(2C)) (18)
o 0

where the expressions on the right of (16) are tabulated functions.?
For perimeters of over 54 (C; > 5) one can also use the asymptotic develop-

ment,
J-ZIJ (mdy~1-— ! [sin (2x - E) + LN cos (Zx _z 17
o N 4/ 16x 4 (17

where x = fig = C,

X .
]9(;},2 N. Watson, 4 Treatise on the Theory of Bessel Functions, Cambridge University Press, London,

2 : - .
A:h_t lmc_gra} involving J, for the interval 0 < x < 5 (wherex = C A is given by AL N, Lowamrand M.
ramoewitz, J. Math. Phys,, 22, 2-12, May 1943; and also by Nail. Bur. Standards Tech. Memo 20.
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For small values of x, one can use a series obtained by integrating the
ascending power series for J, . Thus,

ix oL xt x* x® x®
3 ) = - —_ - - l
L Sy dy =73 (‘ 5 *56 1080 T 31680 ) )

When x = C; = 2 (perimeter of 2.), the result with four terms 1s about 2 percent
in error. This sume percentage error is obtained with one term when the perim-
eter is about A/3.

A graph showing the radiation resistance of single-turn loops with uniform
current as a function of the circumference in wavelengths is presented in Fig.
6-12. The data for the curve are based on Foster’s formulas as given above.
Curves for the approximate formulas of small and large loops are shown by the
dashed lines.

6-9 DIRECTIVITY OF CIRCULAR LOOP ANTENNAS WITH
UNIFORM CURRENT. The directivity D of an antenna was defined in
(2-8-1} as the ratio of maximum radiation intensity to the average radiation
intensity. The maximum radiation intensity for a loop antenna is given by r?
times (6-8-3). The average radiation intensity is given by (6-8-5) divided by 4=n.
Thus, the directivity of a loop is

P=—mT W
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This is Foster’s expression for the directivity of a circular loop with uniform
in-phase current of any circumference C,. The angle ¢ in (1} is the value for
which the field is a maximum.

For a small loop (C; < 1), the directivity expression reduces to

D=43sin*0=2 %)

since the field is a maximum at 8 = 90°. The value of § is the same as for a short
electric dipole. This is 1o be expected since the pattern of a short dipole is the
.same as for a small loop.

For a large loop (C; > 5), (1) reduces to

D = 2C,[J¥(C, sin 8)],.. (3)

From Fig, 6-9 we note that for any loop with C; = 1.84, the maximum value of

J{C, sin §) is 0.582. Thus, the directivity expression of (3) for a large loop
becomes

D =068C, “)

The directivity of a loop antenna as a function of the loop circumference C, is
presented in Fig. 6-13. Curves based on the approximate relations of (2) and (4)
for small and large loops are indicated by dashed lines.

6-10 TABLE OF LOOP FORMULAS. The relations devetoped in the
preceding sections are summarized in Table 6-2. The general and large loop for-
mulas are based on Foster’s results.

6-11 SQUARE LOOPS. it was shown in Sec. 6-3 that the far-field patterns
of square and circular loops of the same area are identical when the loops are
small (4 < A%/100). As a generalization, we may say that the properties depend
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Table 62 Formulas for circular loops with uniform current

Small loopt

General expression A < A3100 Large loop
Quantity (any size loop) C,<d O, =5

GOr(T11C, J(Co sin &) 1200°[1] sin 6 A L
Far E, - . (1 35(Ca sin 6) - L] -3 Same as gencral

. r r A

Ne, £,iC, si T fA

Far H, []“’2(7"‘5[“9) 1:{__131'.1_ = Same as general
r

200,
Radiation 60n2C, J‘ Ja(y) dy 3 20((—
o

2
) - 1974 3?202—'1 = 5920,
resistance, £}

[E5 .4 dy 2

A = area of loop, C; = ¢i e of circular loop, wavel hs.

1 The small loop formulas apply oot only 1o circular Joops bot also to square loops of area 4 and in
fact 1o small loops of any shape baving an area A, The formula involving C, applies, of course, only
to a cirenlar loop. See Sec. 16-9 aboul simulating uniform current on a large loop.

Directivity 425 ; - 068C;

only on the area and thal the shape of the loop has no effect when the loop is
small. However, this is not the case when the loop is large. The pattern of a
circular loop of any size is independent of the angle ¢ but is a function of & (see
Fig. 6-2). On the other hand, the pattern of a Iarge square loop is a function of
both & and ¢. Relerring to Fig. 6-14, the pattern in a plane normal to the plane of
the loop and parallel to two sides 1 and 3), as indicated by the line AA", is simply
the pattern of two point sources representing sides 2 and 4 of the loop. The
pattern in a plane normal to the plane of the loop and passing through diagonal
corners, as indicated by the line B, is different. The compleie range in the

B

Square

Ioup\

4 45

\ v
A | F
d 2
1
)

x Figwre 6-14 Large square loop.
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Figure 6-15 Pattern of square loop
with umiform, in-phase current. The
loop s 4444 on a side. The pattern is in
a plane normal o the plane of the loop
and through the line 44" of Fig. 6-14.

paltern variation as a function of ¢ is contained in this 45" interval between 44
and BB in Fig. 6-14,

An additional difference of large circular and square loops is in the # pat-
terns. For instance, Fig. 6-104 shows the pattern as a function of # for a circular
loop 5/ in diameter. By way of comparison, the pattern for a square loop of the
same area is presented in Fig, 6-15. The square loop is 4.44/ eon a side. The
pattern is in a plane perpendicular to the plane of the loop and parallel to the
sides (plane contains A4’ in Fig. 6-14), Comparing Figs. 6-104 and 6-15, we note
that the pattern lobes of the circular loop decrease in magnitude as @ approaches
90° while the lobes of the square loop are of equal magnitude. This illustrates the
difference of the Bessel function pattern of the circular loop and the trigonoret-
ric function pattern of the square loop. In the abeve discussion, uniform in-phase
currents arc assurned.

6-12 RADIATION EFFICIENCY, @, BANDWIDTH AND
SIGNAL-TO-NOISE RATIO. In Sec. 2-10 we noted that the gain G of an
antenny with respect to an isotropic source is identical with the antenna’s direc-
tivity D provided no losses other tham radiation are present. For the more
gencral case we write as in (2-10-1) that

G =kD (1)
where k = efficiency factor (0 < k < 1), dimensionless

For a lossless antenna, k = 1, but with ohmic losses k is less than 1,
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If an antenna has a radiation resistance R, and a loss resistance R, , then its
{radiation) efficiency factor

R

- (2

k=—""—
R, + R,

and the gain

R, 4nd,, 4rAd..k
G=—"+— 2z = 3
R,+R, 4 4

(3)

For antennas which are small compared to the wavelength, the radiation
resistance R, is small and, if ohmic losses R, are significant, radiation efficiency is
reduced. Thus, short dipoles and small loops may be inefficient radiators when
losses arc present. For example, when R, = R, the radiation efficiency is 50
percent; only half of the power input to the antenna is radiated, the other half
being dissipated as heat in the antenna structure. _

An rf wave entering a cenducter attenuates to 1/e of its surface value in a
distance § given by!

1

5 =
 fruo

(4)

where f = frequency, Hz
A = permeability of medium, H m~
¢ = conductivity of medium, U m”~

I
1

It is assumed that ¢ $ we. The induced current density in the conductor also
attenuates in the same way. This means that the current density associated with a
wave traveling along a conductor is greatest close to the surface, the so-catled
skin effect. The quantity 8 is referred to as the I/e depth of penetration. It follows
that the rf resistance of a round wire or solid cylindrical conductor is equivalent
to the dc resistance of a hollow tube of the same material of wall thickness 8. It is
assumed that the wire or conductor diameter is much larger than 4. Thus,
assuming that the perimeter or circumference L is much smaller than the wave-
length so that the current is essentially uniform around the loop, the ohmic {or
loss resistance) of a smal! loop antenna is given by

_L L e 5
RL_andtS&d no «) )

where L = loop length {perimeter or circumference), m
¢ = wire or conductor diameter, m

'J. D Kraus, Elecivomagnetics, 3rd ed., McGraw-Hill, 1984, pp, 447-451.
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From (6-8-10) the radiation resistance of a small loop is

A 1
R, ~ 31 200(;3) ~ 197C% {6)

where 4 = loop area (square or circular), m?
C, = C/4, where C = circumference of circular loop

Assuming that the loop's inductive reactance is balanced by a capacitor, the ter-
minal impedance will be resistive and equal to

Ry=R, +R; N

and the radiation efficiency, or ratio of power radiated to input power, wili be
ke— L
b+ (R /R,}

For a I-turn copper-conductor circular loop (perimeter L =C) in air

c=5Tx1070m }, go=4nx 10" "Hm™ ),
R 3430
- = 3r3.5 %
R, Cfiu.d

where C = circumference of loop, m

fune = frequency, MHz
d = wire (or conductor) diameter, m

For small square loops of side length I (L = 4/), we may take C = 3.51

Example. Find the radigtion efficiency of a 1-m diameter loop (C = 2 m} of 10-mm
diameter copper wire at {a) 1 MHz and (b) at 10 MHz.

Soifution
{a) From (9),
R, 3430
e = 11000 10
R, nixl1xtp? 1o
and the radiation efficiency
1
k=———-—=9x 10" {or —40.5dB 10a)
TG 4 (
(M A1 10 MHz we have
k=022 (or —6.6 dB} {11}

The radiation efficiency as a function of frequency for a small single-tuen
copper loop in air is shown in Fig. 6-16. It is assumed that the loop is small
compared to the wavelength (C < ) and that the wire or conductor diameter is
small compared te the loop circumference (d < C). Dielectric losses are neglected.
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Radiation efficiency factor, &, dB down

| Figure 6-16 Radiation efficiency factor as a
0.1 1 10 function of frequency for a 1-m dizameter

single-tum copper loop in air (C=nm,
Frequency, MHz d = 10 mm).

In spite of the low efficiency of a small loop, there are many applications
where such loops are useful in receiving applications provided the received
signal-to-noise ratio is acceptable as discussed later in this section [see (19)].

For loops with n turns, R, increases in proportion to n* while R, increases
in proportion to r. Hence, lor multitura loops {9} becomes

o (2
Rr C f Mz l‘ld
and the radiation efficiency & is increased by a factor which approaches » if R;/R,
is large. In (12) the effect of capacitance between turns has been neglected but if
the turns are spaced sufficiently and are few in number, (12) can be a useful
approximation. )

The radiation efficiency of a multiturn loop or coil antenna can be
increased by introducing a ferrite rod into the coil as in Fig. 6-17. Here the coil
{(horizontal to receive vertical polarization) serves the function of both an antenna
and also {with a series capacitor) of the resonant circuit for the first (mixer) stage
of a broadcast receiver (500 to 1600 kHz).

‘The radiation resistance of a ferrite loaded loop or coil is given by

2
R, = 31 2003.13;,:12(%) — 1972 C (@) (13)
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Ferrite rod —w

/

Magnetic
field
lines

Figure 6-17 Ferrite rod antenna
and associated (uned circuit of recei-
ver front-end mixer stage.

and the loss resistance {duc to the ferrite rod) by

R, = 2nfp, 2 pon? 5 (@ (14)
I !

r

where /= frequency, Hz

u,, = effective relative permeability of ferrite rod. dimensionless

i, = rea! part of relative permeability of ferrite matenal, dimensionless

4 = imaginary part of relative permeability of ferritc material, dimension-
less

o =4n x 1077, Hm ™!

n = number of turns

a = ferrite rod cross-sectional area, m?

[ = length of ferrite rod, m

Because of its open geometry {as contrasted to a closed core or ring) a
ferrite rod with a relative permeability p, will have a smaller effective refative
permeability u,, (due to demagnctization effect). Typically for a rod with i, = 250
and a length-diameter ratio of 10, the effective relative permeability is about 30.

The ohmic loss resistance R, of the coil is as given by {5). The radiation
efficiency factor for the ferrite rod coil antenna is then

R, 1
k= —- (15)
R,+R, +R, L+[{R.+R)R]

Dielectric 1oss is neglected.
Knowing the total resistance (R, + R, + R;) of the ferrite rod antenna, one
can calculate the O and bandwidth of the tuned circuit of which it is a part. The
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@ (ratio of energy stored to energy tost per cycle) is given by

el o
R, +R + Ry Afy

0= (16)
where f, = center frequency, Hz
L = u,, nlau,/l = inductance, H!
Afyp = bandwidth at half-power, Hz

Example. The multiturn feerite rod anténna of a broadcast receiver has 10 turns of
I mm ditameter enameled copper wire wound on a ferrite rod 1 cm in diameter and
10 em long. The ferrite rod g, = @, — g = 250 — j2.5. Take p,, = 50. At 1 MHz find
|a} the radiation efficiency, (b} the @ and (¢} the half-power bandwidth.

Solution

{a) From(13), R, = 1.9] x 10°% Q. From (14}, Ry =031 0 From(4), 6 =7 x -2
m. Thus, the ratio 4/6 = 14.3 so we can use (5) (times »), which makes R, =
0.026 Q. Accordingly, (R, + R ¥R, =1790 and & =1/1790=356 x 107*
{Digiectric losses are neglected.)

(h) From {16), Q = 162.

{c) From (16), Afys = 0.170 kHz.

Although 6.17 kHz is adequate front-end selectivity for the 10-kHz channel '
spacing of the broadcast band, the low aperture efficiency of less than 0.06
percent makes 1l unceriain whether the sensirivity is adeguate. To determine this,
a calculation of the signal-to-neoise tatio for a typical application is required.
From the Friis transmission formula (2-25-5), the power received from a trans-
mitter of power P, at a distance r is

PfAEf Aer

Po=—ms (W) (17)
rii
where A,, = effective aperture of transmitting antenna, m*

A,, = effective aperture of receiving antenna, m’

For a small loop receiving antenna, D = § s0

154k 2
e 4?: {m ) (18]
where k = radiation efficiency factor
The signal-to-noise ratio (8/N) is given by
% = % {dimensionless) (19

! Distifiguish between L for indu_ctance in(16)and L for length in (3.
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where P, = received power, W
N = kT, Af [from (17-3-8)]

At | MHz, T, is dominated by the sky (antenna) temperature T, so taking
T... = T. we have for this case

5¥3
N = kT, &f (20)

where & = Boltzmann's coastant = 1.38 x 10733 JK !
T, = sky background temperature, K
Af = bandwidth, Hz

Distinguish between k in (20) for Boltzmann's constant and k in (18) for the
radiation efficiency factor.

.

Example. Find the S/N ratio for a receiver with the ferrite rod anteana of the above
example at a distance of 100 km from a !-MHz 10-kW broadcast statien with an
omnidirectional antenna. Take the receiver band width as Af = 10* Hz.

Solution. Assuming that the radiation pattern of the transmitting antenna fills a
haif-sphere, its directivity is 2 and, hence,

From the previous example, k = 5.6 x 107 * so from (17} and (18)
P=10"°W
Taking the !-MHz sky background temperature 7, ~ 10*? K,

5

N=1BxI107"x10°x10*=14x107°W
Therefore, the signal-te-noise ratio at the receiver input is

5 16-*®

EZW:?I“ or 28.5 dB

which is adequate for AM reception.

Thus, an antenna which is less than 0.06 percent efficient is adequate for
AM reception under the circumstances of the above example. Even smaller, less-
efficient ferrite rod antennas may be satisfactory and are used in popular low-cost
pocket-size radios. However, the very low efficiency makes the antenna unsuit-
able for transmission except under the special circumstances of low power and
short range.

Formulas for radiation resistance, loss resistance and radiation efficiency of
small loop antennas and also formulas for @, bandwidth and signal-to-noise ratio
are summarized in Table 6-3.
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Table 6-3 Radiation resistance, loss resistance and radiation
efficiency of small loop antennas and also formulas for 0, band-
width and signal-to-noise ratiot

Reference equation

Quantity Formula for units
. A\

Radiation resistance, R. =131 20‘{_—2) {n {6-8-10)

single turn A

Radiatioh resistance,
single turm

R <ML e g (6-12-5)
d f ne
n-turn

R, =197C3 () (6-8-9)

Loss resistance,

Lol

1

Radiation efficiency, = 6-12-8)
n-turn 1+ (R/R}

. R 3430
R,/R, tatio, n-tum E% = —Em {6-12-12

copper conductor

Loss resistance, n-turn

o a
R, = 2nfu, 2 ugn? 1@ (1219
ferrite rod antenna Hr

!

Radiation efficiency, ks —m—mmmm—— {6-12-15)
n-turn ferrite rod 1+ [(R,+RAR]
ankenna
2nf L

Q Q=—-—-—"f° {6-12-16)

R+ R, +R;
Bandwidth Afp = % {6-12-16}
Signal-to-noise S _P_ PA.A, {6-12-17), (6-12-19)
ratio N N riakT Al and (6-12-20)

+ L in third row for loss resistance is perimeter length whereas L in cighth row for (0 is
inductance [see (6-12-161).

PROBLEMS'
61 The 3//4 diameter loop. Calculate and plot the far-field pattern normat to the plane
of a circular loop 34/4 in diameter with a uniform in-phase current distribution.
*6-2 The 14 square joop. Calculate and plot the far-field pattern in a plane normal to the
plane of a square loop and paralle! 1o one side. The loop is 14 on a side. Assume
uniform in-phase currents.

! Answers to starred (*) problems are given in App. D.
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*6-4

6-5

6-6

67

68

6-9

4 THE LOOP ANTENNA

The /10 diameter loop. What is the maximum effective aperture of a thin loop

antenna 0.1/ in diameter with a uniform in-phase current distribution?

Radiation resistance of loop, What is the radiation resistance of the loop of Prob.
6-17

P_a_ttern, r_adialion resistance and directivity of loops. A circular loop antenna with
uniform in-phase current has a diameter D. What is (2} the far-field pattern
{caleulate and plot), (b} the radiation resisiance and (¢} the directivity lor each of
three cases where (1) D = i34, {2) D = 1.5; and (I D =5g4"

Small square toop. Resalving the small square loop with uniform current inte four
short dipoles, show that the far-field pattern in the plane of the loop is a circle.

Circular loop, A circular loop antenna with uniform in-phase current has a diam-
eter D. Find i) the far-field pattern (calculate and plot), (b) the radiation resistance
and (¢} the directivity lor the following three cases: (1) D= 4/3, (2) D = 0.754 and
{(WD=24

Small-loop resistance. (a) Using a Poyniing vector integration, show that the radi-
ation resistance of a small loop is equal to 3207%(4/2%) {2 where 4 = area of loop
{m?}. {b) Show that the effective aperture of an isotropic antenna equals £%/4m.

Loop and dipole for circular polarization. If a short electric dipole antenna is
mounted inside a small loop antenna {on polar axis, Fig. 6-6) und both dipole and
lgop are fed in phase with equal power, show that the radiation is everywhere
circularly polarized with a pattern as in Fig, 6-6.

CHAPTER

THE
HELICAL
ANTENNA

7-1 INTRODUCTION. In 1946, a few months after joining he faculty at
Ohio State University, I attended an afternoon lecture on traveling-wave tubes
by a famous scientist who was visiting the campus. In these tubes an electron
beam is fired down the inside of a long wire helix for amplification of waves
traveling along the helix. The helix is only a small fraction of a wavelength in
diameter and acts as a guiding structure. After the lecture T asked the visitor if he
thought a helix could be used as an antenna, “ No,” he replied, “ I've tried it and
it doesn’t work.,” The finality of his answer set me thinking. If the helix were
larger in diameter than in a traveling-wave {ube, I felt that it would have to
radiate in some way, but how, 1 did not know. 1 determined to find out.

That evening in the basement of my home I wound a 7-turn helical coil of
wire 14 in circumference and fed it via coaxial line and ground plane from my
12-cm oscillator (Fig. 7-1). [ was thrilled to find that it produced a sharp beam of
circularly polarized radiation off its open end.

Next I wound other helices with larger and smaller diameters, noting little
change in behavior. Adding more turns, however, resulted in sharper beams.
Although my invention/discovery had come quickly, I realized then that much
work would be required to understand this remarkable antenna. Actually it took

~ years of extensive measurements and calculations. I published many articles, a

few with students to -whom I had assigned studies of specific properties of the

265
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Figure 7-1  1he hrst axiul-mode helical antenna {19460 When 1 rotated Lhe Hand-held dipcle there
was no change in response. indicating circular polarization.

antenna.’ 1 also derived equations suitable for engineering design purposes and
summarized them in Chap. 7 of the first edition of Anrennas.

The steps taken to unravel the mystery of the helix went something like
this. The input impedance was measured and found to be essentiatly resistive and
constant over 4 wide bandwidth. This suggesied that the helix behaved like a
terminated (matched) transmission line. This was hard to understand because the
open end of the helix was completcly unterminated. New insights came when we
measured Lhe current distribution along the helix. This we did by rotating a helix
and its ground plune while holding a small loop (current probe) under the helical
conductor {Fig. 7-2). At a low frequency (helix circumference about 42} there was
an almost pure standing wave [IVSWR — =) all along the helix {oulgoing and
rellected waves nearly equal) (Fig. 7-3a), but as the frequency increased, the dis-

' J D Krauws. " Hetical Beam Antenna Efecrronies, 20, 109 111, April 1947,

). D. Kraus and 1. C. Williamson, ™ Characteristics of Helical Antennas Fadiating in the Axial Mode.”
o Appi. Phys. 19, 87-96. Fanuary 1948, )

O] Glasser and J. D. Kraus, * Measured Impedances of Helical Beam Antennas.” J. Appl. Phys., 19,
193197, February 1948

1. D. Kraus. “Helical Beam Antennas fur Wide-Band Applications.” Proc. IRE, ¥, 1236-1242.
October 1948,

I D. Kraus, " The Helical Antenna.” Proc. IRE. 37, 263-272. March 1949,

.: .9‘[‘}9. Kraus, “ Helical Beam Antenna Design Techmiques,” Communications, 29, 6-9, 34-35, Seplember
T.E. Tice and J. D. Kraus, " The Influence of Conductor Size on (he Properties of Helical Beam
Antennas.” Proc. IRE. 37, 1296, November 1949,
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Figure 7-2  Hehix and ground plane mounted to rotate on the helix axis for current distribution
measurements along the helical conductor using a loop probe. {After Kraws and Willivmson,
= Characteristics of Helicaf Aniennas Rudiating fn the Acial Mode” ). Appl. Phys., 19, 87-96, January
19480 As the helix was rotated, the probe wus moved horizontally 1o lollow the helical conductor.

tribution changed dramatically. For a helix circumference of about 1) three
regions appeared: near the input end the current decayed exponentially, near the
open ¢nd there was a standing wave over a short distance, while between the
ends there was a relatively uniform current amplitude (small VSWR) which
extended over most of the helix (Fig. 7-3b). The decay at the input end could be
understood as a transition between a helix-to-ground-plane mode and a pure
helix mode. The reflection of the outgoing wave at the open end also decayed
exponentially to a much smaller reflected wave, leaving the outgoing wave
dominant over most of the helix (VSWR small). The small VSWR ripple was
sufficient, however, to measure the relative phase velocity (=4,/4,) along the
helix, which was useful for an understanding of the radiation patterns. The
current distribution resolved into outgoing and reflected waves is shown in
Fig. 7-3c.

Our extensive pattern measurements showed that the end-fire beam mode
persists over a frequency range of about 2 to ! centered on the frequency for
which the circumnference is 14. Thus, the diameter I had chosen for the first helix I
tried was optimum!

Although the helix is continuous, it can also be regarded as a periodic
structure. Thus, assuming that an »#-turn helix is an end-fre array of n sources, I
caiculated the pattern using the formula (4-6-9) for the ordinary end-fire condi-
tion. Surprisingly, the measured helix patterns were much sharper. Could the
helix be operating in the increased-directivity condition? 1 calculated patterns for
this condition using the formula (4-6-14) and obtained good agreement with the
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Figure 7-3 Typical measured current distribution {4} at a frequency below the axial mode of oper-
ation 2nd (b} at a frequency near the center of 1he axial mode region. {¢) Resolulion of currents into
outgoing and reflected waves. {From Kraus and Williamson, * Characieristics of Helical Antennas
Radiating in the Axial Mode,” J. Appl. Phys., 19, 87-96, January 1948) Compare with distribution on
the long, thick cylindrical conductor in Fig, 9-18.

measured patterns. Furthermore, this condition persisted over a wide bandwidth,
indicating that the phase velocity on the helix changes by just the right amount
to maintain the increased-directivity condition. The phase velocity measurements
we had made also confirmed this. Thus, the helix locks onto the increased-
directivity condition and automatically stays locked over the full bandwidth. Not
only does the helix have a nearly uniform resistive input over a wide bandwidth
but it also operates as a supergain end-fire array over the same bandwidth! Fur-
thermore, it is noncritical to an unprecedented degree and is easy to use in arrays
because of an almost negligible mutual impedance. '

The helix immediately found wide application. I employid it in an array of
96 11-turn helices in a radio telescope I designed and built with my students in
1951 (Fig. 7-4). Operating at frequencies of 200 to 300 MHz, the array measured
50 m in tength and had a gain of 35 dB. With it we produced some of the first
and most extensive maps of the radio sky.! Others employed the helix over a
wide range of frequencies, some at frequencies as low as 10 MHz (Fig. 7-5).

' 1. D. Xraus, Radio Astronomy, 2nd ed., Cygnus-Quasar, 1986, P 8-2.
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.

Figure 74 Radio ielescope at the Ohio State Universily Radio Observatory with a-rra:.r ol 96 ! l-turn
monofilar axial-mode helical antennas mounted on a tiltable ground plane 50 m long. This array was
used 1o make some of the first and most extensive maps of the radio sky. See also Sec. 7-12.

Figure 7-5 Rotatable (in azimuth) 6-turn helical antenna about 45 m long for operation al fre-
quencies around 10 MHz {4 = 30 m). Note workmen on arch at far end for scale. (Cowrresy Electro-
Physics Laborarory.)
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Figure 7-6 Fleetsatcom geostationary relay satellite with monofilar axial-mode helical antennas lor
transmission and reception with one as the feed for a dish, These satellites provide global communica-
tions for the U8 military lorces. (Courresy TRW Corp.: H. E. King and J. L. Wong, "Antenna Sysiem
tor the FleetSatCom Satellites.” IETE Iniernational Symposium on Antennas and Propagation, pp.
A4 352 1977

Following Sputnik the helical antenna became the workhorse of space com-
munications for telephone, television and data, being employed both on satellites
and at greund stations. Many U.S. satellites, including its weather satellites,
Comisat, Fleetsatcom (Fig. 7-6), GOES (global environmental sateilites), Leasat,
Navstar-(GrPS {global position satellites) (Fig. 7-7), Westur and tracking and data-
relay satellites, all have helical antennas, the latter with arrays of 30. Russiar
satellites also have helical antennas, each of the Ekran class satellites being

Three nickel-cadmium batteries
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Figure 7-7 Nuvstar GPS (global position) satellitc with array al (0 monofilar axial-mode helicat
antennas. Eighleen of thesc satellites are in clliptical orbits around the earth, From them one can
determine one’s absolute position anywhere on the earth (latitude, longitude and altitude), at any time
and in any weather, 10 a precision of a few centimeters and relative position 1o a few millimeters,

equipped with an array of 96 helicals. The helical antenna has been carricd to the
Moon and Mars. It is also on many other probes of planets and comets, being
used alone, in arrays or as feeds for parabolic reflectors, its circular polarization
high gain and simplicity making it especiaily attractive for space applications.'

This shert account provides a brief introduction to the helix in which some
of the experimental and analytical steps taken to understand its behavior arc
outlined. Specifically the helix discussed can be described as a monofilar {one-wire)
axial-mode helical anterma. Its operation is explained in more detail in the follow-
ing sections along with treatments of many variants and related forms of helical
antennas including. later in the chapter, helices with 2 or more wires.

7-2 HELICAL GEOMUETRY. The helix is a basic 3-dimensional geometric
form. A helical wire on a uniform cylinder becomes a straight wire when
unwound by rolling the cylinder on a flat surface. Viewed end-on, a helix projects
as a circle. Thus, a helix combines the geometric forms of a straight line, a circle
and a cylinder. In addition a helix has handedness; it can be either left- or right-
handed.

' A more detaited personal account of ny early work on the helical antemna is given in my book Big
Ear, Cygnus-Quasar, 1976.
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The lollowing symbols will be used to describe a helix (Fig. 7-8):

D = diameter of helix {center to center)

C = circumference of helix = D

S = spacing between turns (center to center}
« = pitch angle = arctan 5/zD

L =length of | turn

n = number of turns

4 = axial length = n§

d = diameter of helix conductor

The diameter I and circumference C refer to the imaginary cylinder whose
surface passes through the centerline of the helix conductor. A subscript 2 sig-
nifies that the dimension is measured in free-space warvelengths. For example, D
is the helix diameter in free-space wavelengths.

Il 1 turn of a circular helix is unrofled on a flat plane, the relation between
the spacing S, circumference C, turn length L and pitch angle  are as illustrated
by the triangle in Fig. 7-9.

The dimensions of a helix are conveniently represented by a diameter-
spacing chart or, as in Fig. 7-10, by a circumference-spacing chart. On this chart
the dimensions of a helix- may be expressed either in rectangular coordinates by
the spacing S; and circumference C; or in polar coordinates by the length of 1
turn [.; and the pitch angle > When the spacing is zero, x =0 and the helix
becomes a loop. On the other hand, when the diameter is zero, ¥ = 90° and the
helix becomes a linear conductor. Thus, in Fig. 7-10 the ordinate axis represents
loops while the abscissa axis represents linear conductors. The cntire area
between the two axes represents the general case of the helix.

Suppose that we have a 1-turn helix with a turn length of 14 (L, = 1). When
x =0, the helix is a loop of 14 circumference or of diameter equal to 14/a. As the
pitch angle  increases, the circumference decreases and the dimensions of the
helix move along the L; = 1 curve in Fig. 7-10 until, when o = 90”, the “helix ™ is
4 straight conductor 1 fong.

Surface of imaginary
helix cylinder

Figure 7-8 Helix  and  associated
dimensions.
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Figure 7-% Relation between circumlference, spacing, turn kength and
pitch angie of a helix.
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Figure 7-10  Helix chart showing the location of different modes of operation as a function of the
helix dimensions (diameter, spacing and pitch angle). As a function of frequency the helix moves along
a line of constant pitch angle. Along the vertical axis the helices become leops and along the horizon-
tal axis they become linear conductors.
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‘The helix dimensions for various operationat modes are indicated n Tig.
7.10, Reference 1o these will be made as we proceed through the chaper.

7-3 TRANSMISSION AND RADIATION MODES OF MONO-
FILAR' HELICES. In our discussions it is necessary to distinguish between
rrasatission and radiation modes.

The term fransmission mode is used to describe the manner in which sn
clectromagnetic wave is propagated along an infinite helix as though the helix
constitutes an inlinite transmussion line or waveguide, A variety of different trans-
mission modes i< possible,

The term radiation mode 15 used to describe the general form of the far-ficld
pattern of a finite helicat antenna. Although many patterns are possible. two
kinds are of particular interest. One is the axial (or beam} mode of radiation (R,
mode. beam on axis) and the other is the normal mode of radiation (K, mode.
radiation maximum perpendicular to axis),

The lowest transmission muode for a helix has adjacent regions of positive
and negative charge separated by many tuens, This mode is designed as the T,
transmission mode and the instantancous charge distribution is as suggested by
Fig. 7-11a. The T, mode is important when the length of 1 turn 15 smail com-
pared to the wavelength (L < ») und s the mode occurring on low-frequency
inductances. It is also the important transmission mode in the traveling-wave
tube. Since the adjacent regions of positive and negative charge arc scparated by
an appreciable axial distance..a substantial axial component of the electric field is
present, and in the traveling-wave tube this field interacts with the electron
stream (Fig, 7-11a). If the criterion L, < % is arbitrarily selected as a boundary
for the T, transmission mode. the region of the helix dimensions for which this
mode is important is within the T, R, area in Fig. 7-10.

" Monaofilar — unifiar = one wire — single wire = single conductor (terms uwsed to distinguish the
one-wire hehx from helices with 2 ur more wiresh
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Figure 7-12  Patterns of straight conductor, Jeop and helix compared. I, and f; represent current
magnitudes of waves traveling in opposite directions on antennas. 107, — f, there is a pure standing
wave. If [, =0. only a pure traveling wave is present. (e = velocity of wave along antenna.
£ = veloity ol light, C = circumference.)

A helix excited in the T, transmission mode may radiate. Let us consider
the case when the helix is very short (nL < ) and the current is assumed to be of
uniform magnitude and in phasc along the entire helix. It is theoretically possibie
to approximate this condition on a small, cnd-loaded helix. However, its radi-
ation resistance is small. The maximum field from the helix is normal to the helix
axis for all helix dimensions provided only that sL < 4. Thus, this condition is
called a “normal radiation mode™ (R,). Any component of the field has 4 sine
variation with 8 as shown in Fig. 7-12 (lower left). The space pattern is a figure-
of-revolution of the pattern shown around the vertical,axis. The field is. in
general, elliptically polarized but for certain helix dimensgions may be circularly
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polarized and for other dimensions, linearly polarized (see Sec. 7-19). The trans-
mission mode and radiation mode appropriate for very small helices can be
described by combining the T; and R, designations as T, R,. This designation is
applied in Fig. 7-10 to the region of helix dimensions near the origin.

A first-order transmission mode on the helix, designated T, is possible
when the helix circumference C in free-space wavelengths is of the order of 14,
For small pitch angles. this mode has regions of adjacent positive and negative
charge separated by approximately 4-turn (or near the opposite ends of a
diameter) as shown in Fig. 7-116 and also in end view by Fig. 7-11c. It is found
that radiation from helices with circumferences of the order of 14(C, ~ 1) and a
number of turns (# > 1) is a well-defined beam with a maximum in the direction
of the helix axis. Hence, this type of operation is called the “ axial (or beam) mode
of radiation " with designution R,. The radiation from this monofilar axial mode
helical antenna is cireularly polarized or nearly so.

The monofilar axial mode of radiation occurs over a range of dimensions as
indicated by the shaded (T,R,) area in Fig. 7-10; being associated with the T,
transmission mode, the combined designation appropriate 10 this region of helix
dimensions is TR,

Still higher-order transmission moedes, T;, T; and so forth, become per-

missible for larger values of C,. For small pitch angles, the approximate charge _

distribution around the helix for these modes is as suggested by Fig. 7-11c.

The axial {T\R,} and normal radiation modc (T, R,) patterns of a4 helix are
compared with the radiation patterns for straight conductors and loops in Fig.
7-12. It is 1o be noted that the palterns of a shoert linear conductor, a small loop
and a small helix arc the same.

7-4 PRACTICAL DESIGN CONS[DERATIGNS FOR THE

MONOFILAR AXIAL-MODE HELICAL ANTENNA.! Before ana-

Iyzing the many facets of the antenna individually, an overall picture will be given
by describing the performance of some practical designs.
The monefilar axial-mode helical antenna is very noncritical and one of the

eastest of all antennas to build. Nevertheless, attention to delails can maximize its
performance.

The important parameters are:

1. Beam width
2. Gain

3. Impedance
4. Axial ratio

" When T first described the helical beam antenna in 1946, there was little chance of ambiguily but
now there are many variations of the basic type making more explicit names desirable —hence the
term, manohlar axial-mode helical antenna. Uniform 1-wire end-fire Rhefix or single-conductor hetical
beam antenna are also possibie designations while some call it a Kraus-type hefix or Kraus coil. .
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Gain and beam width, which ar¢ interdependent [G =" {I/HPBW?)], and
the other parameters are all functions of the number of turns, the turn spacing (or
pitch angle} and the frequency. For a given number of turns the behavior of the
beam width, gain, impedance and axial ratio determines the useful bandwidth.
The nominal center frequency of this bandwidth corresponds to a helix circum-
ference of about 14 {C; = 1). For a given bandwidth to be completely useful, all 4
parameters must be satisfactory over the entire bandwidth.

" Fhe parameters are also functions of the ground plane size and shape, the
helical conductor diameter, the helix support structure and the feed arrangement.
The ground plane may be flat (either circular or square) with a diameter or side
dimension of at least 3//4 or the ground plane (launching structure} may be
cup-shaped forming a shallow cavity {Fig. 7-13b).

A 2-turn flush-mounted design described by Bystrom and Bernsten® for
aircraft applications is shown in Fig. 7-13¢. These authors found that 2 turns are
required to obtain satisfactory pattern and impedance characteristics but that no
significant improvement is obtlained with a deeper cavity and a larger number of
turns since the size of the aperture opening remains the same (like an open-ended
cylindrical waveguide).

The deep conical acrangement of Fig. 7-134 is effective in reducing the side-
and back-lobe radiation.?

Launching a wave on the helix may also be done without a ground plane,
producing a back-fire beam {see Fig. 7-56). By slicing the outer conducter of the
coaxial cable longitudinally and separating it gradually from the inner conductor
over the first turn or two of the helix, Munk and Peters devised a ground-
planeless feed that produces a forward end-fire beam.?

Conductor size is not critical® and may range from 0.0054 or less to 0.054
or more (Fig. 7-14). The helix may be supported by a few radial insulators
mounted on an axial diglectric or metal rod or tube whose diameter is a few
hundredths of a wavelength, by one or more longitudinal diclectric rods mounted
peripherally {secured directly to the helical conductor) or by a thin-wall dielectric
tube on which the helix is wound. With the latter arrangement the operating
bandwidth is shifted to lower frequencies so that for a given frequency the
antenna is smaller. Several of these mounting arrangements are illustrated in
Fig. 7-15.

'A. Bystrom, Fr and D. (. Bernsten, "An Experimental Investigaiton of Cavity-Mounted Helical

Antennas,” IRE Trans. Anis. Prop., AP-4, 53 58, January 1936

1 K. R. Carver, * The Helicone: A Circularly Polarized Antenna with Low Side Lobe Level,” Proc.

TEEE, 55, 559, Aprit 1967,

K. R. Carver and B. M. Pouts, * Some Characteristics of the Helicone Antenna,” Antennas and Propa-

gation International Symposivm, 1970, pp. 142-150. '
? B A Munk and L. Peters, A Helica! Launcher for the Helical Antenna,” IEEE Trans. .ims. Prop.,

AP-16, 362-363, May 1963,

+ T. E. Tice and J. D. Kraus, * The Influence of Conductor Size on the Properties of Helical Beam

Antennas,” Proc. IRE. 37, 1296, November 1949.



278 T THE HELICAL ANTENNA

1e d=+2.5nS.h J
‘ g
Flat Cupped
ground plane giround-
|eircular or plane
sauare) \
=N
i
(@) b) )
0.75 h———+ Ground plane
Plastic / [aircraft skin}
/Cover
4
0.5 & 14"
{:HS_\’ 5-\:0_25 [(‘)
Taper
for
- match

1lke 50-0 coaxiat line

Figure 7-13 (4} Monofilar axial-mode helical antenna on flat ground plane and (b} in shallow cupped
ground plane {see also Fig 7-16c). (¢} General-purpose flush-mounted 2-turn monofilar axial-mode
helical antenna with taper feed for matching 10 a 50-01 coaxial line (after Bystrom and Bernsten, ref. 1.
p. 2771 tsee also Fig. 7-16a and b). () Deep conical ground-plane enclosure for reducing side and back
lobes. {After K. R. Carver, ref. 2, p. 277).

The helix may be fed axially, peripherally or from any convenient location
on the ground-plane launching structure with the inner conductor of the coaxial
line connected to the helix and the outer conductor bonded to the ground plane.

With axial feed the terminal impedance (resistive) is given within 20 percent

by
R =140C; £9)] (0
while with peripheral feed Baker! gives its value within 10 percent as
150
R=——= (O [9))
N

: e
AD- E. Bz:ker, Design of a Broadband Impedance Matching Section lor Peripherally Fed Helical
ntennas,” Amenng 4pplications Symposium, University of Dlinois, September 1980.
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Figure 7-14 Peripherally fed monofilar axial-mode helical antennas with helix conductors of 0.055.
0.017 and 0.00424 diameter at center frequency of 400 MHz for determining effect of conductor
diameter on helix performance. Only minor differences were measured. (dfter T. E. Tice and J. D.
Kraus, " The Influence of Conductor Size on the Properties of Helical Beam Antennas.” Proc. IRE. 37,
1296, November 1949 The 0.0554 diameler tubing {4.1 cm diameter) is about the largest uize which
could be bent to the radius of 11 ¢m { = i/2x}.

These relations have the restrictions that 0.8 < C; <12, 12° < x < 14° and
n>4.

With a suitable matching section the terminal impedance (resistive) can be
made any desired value from less than 50 2 to more than 130 €. Thus, by bring-
ing the last -turn of the helix paraliel to the ground plane in a gradual manner,
a tapered transition between the 140- or 150-Q helix impedance and a 50-0Q
coaxial line can be readily accomplished.! This can be done with either axially or
peripherally fed helices but is more convenient with a peripheral feed. Details of a
suitable arrangement are shown in Fig. 7-16a and b.

As the helix tubing is brought close to the ground plane, it is gradually
flattened until it is compiletely flat at the termination, where it is spaced from the
ground plane by a dielectric sheet {or slab). The appropriate height k (or thick-
ness of the sheet) is given by? !

"
h= =
[377/( e Zo) — 2

where w = width of conductor at termination
h = height of conductor above ground plane (or thickness of
dielectric sheet) in same units as w
¢, = relative permittivity of dielectric sheet
Z, = characteristic impedance of diclectric sheet

3)

'J. D. Kraus, “A 50-chm Input impedance for Helical Beam Antennas,” [EEE Trans. Ants. Prop.,
AP-25, 913, Novemnber 1977,

1. D, Kraus. Electromagnetics, 3rd ed., McGraw-Hill, (984, pp. 397-398.
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Figure 7-15 Monofilar axial-mode helical
antenna. supported by axial metat or dielectric
rod (or tube) with radial insolators (a), by four
peripheral dielectric rods secured to the helix (B)
and by a dielectric tube on which the helix is
wound {c).

=
=

Example. If the flattened tubing width is 5 mm, find the required thickness of a
polystyrene sheet (¢, = 2.7) for matching to a 50-0) coaxial transmission line,

Solution. From (3},
p— 5 =
(377427 x 505 — 2

A typical peripherally fed monofilar axial-mode helical antenna with cup
ground-plane launcher matched to a 50-02 line, as in Fig. 7-16a and b, is shown in

9 mm

Hehx

tubing f\habtitnegn ed
Dielectric
sheet
[}
4 Ground @

I T 24 FEEEIEILIETESEEIEFE P

Hr 50-1 coaxial
A’ connector

ﬂI'IE

Detailed crass-section through
AA" as seen from right.

Dielectric Flattened

sheet\ }.,_ _..{/ tubing

G777 AV 777770 3 ®

= Ground

RiLd,

connactor with detailed cross section at (b).

T plane Figure 7-16 {a) Gradually tapered
50-01 coaxial transition from helix to coaxial line
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Cupped ground plane

Beam -
direction
—_—
=0
4
At center
frequency
12

50-2 \ a:(;\,f;EP\
?::;m C=xD L Example 9 b=ai2

1 turn

unrolled

Figure 7-16c Typical peripherally fed monofilar axial-mode helical antenna with cupped ground
plane matched to & 50-L) coaxial transmissicn line as in Fig. 7-162 and b. The turn spacing § = 0,225
and the circumlference ¢ = 4 at the center frequency. The relative phase velocity p changes automati-
cally by just the right amount to lock onto end-fire (¢ = 0%) with supergain over a frequency range of
about one octave. Typical dimensions of the cupped ground plane are a = 0.754 and h = a,Q at the
center frequency.

Fig. 7-16c with dimensions given in wavelengths at the center frequency for
which C; = 1. Support may be an axial rod with radial insulators or one or more
peripheral rods (Fig, 7-132 and b).

A monofilar axial-mode helical antenna with flat circular ground plane and
supported by diclectric members is shown in Fig. 7-17 and one with cupped
ground plane supported by a dielectric cylinder is illustrated in Fig. 7-18.

Measured patterns of a 6-turn helix as a function of frequency are presented
in Fig. 7-19 and patterns at the center frequency {C; = 1) as a function of length
{number of turns) are shown in Fig. 7-20.

Based on a large number of such pattern measurements which we made
during 1948 and 1949, the beam widths were found to be given by the following
quasi-empirical relations.

HPBW (half-power beam width) ~ -

115

— {(d 5
C. s, {deg) (5)

BWEN (beam width between first nulls) =

The HPBW as given by {4) is shown graphically in Fig. 7-21. Dividing the
square of (4) into the humber of square degrees in a sphere (41 253} yields an
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Figure 7-17 Diclectric-member-supported monofilar axial-mode helical antenna with flat circular
ground plan€. The pitch angle is 12.5°. The axial feed is directly from a 150-0 coaxial cable (no
matching section required). The conductor tubing is 0.024 in diameter. Note that the open grid of the
ground piane has both citcular and radial conductors. Bosh are essential. (Built by the author.}

Figure 7-18 Thin-wall plastic-cylinder-supporied 64-turn monofilar axial-mode helical anterna with
solid metal cupped ground plane. Feeding is via a matching transition from a 50-{} cable connected
through a fitting mounted on the back of the cup ground plane at a point between the plastic cylinder
and the lip of the cup. The helix is a flat metal strip bonded to the plastic cylinder. The strip width is
0034 {equivalent to a 0.0154 diameter round conductor). The pitch angle is 12.8°, Built by the author
for UHF TV band operation with YSWR < 2 from chanael 25 o 83 (524 to 890 MHz) and less than
1.2 from channel 27 1o 75 (548 10 842 MHz).
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.= .68 C,=.73 C,=.85 €= 87 £,=140% C,=1.22 €,=1.35
275 MH:z 300 MH: 350 MH: 400 MHz 450 MHz 500 MHz 5680 MHz

Figure 7-19  Meusured field patterns of monolilar axial-mode helical antenna of 6 wirns and 14
pitch angle. Patterns are characteristic of the axial mode of radiation over a range of circumlerences
from about (.73 w 1,225, Both the circumberence and the frequency {in megahertz) are indicated. The
sulid patterns are fur the horizontally polarized field component (£} and the dashed for the vertically
polurized 1E) Buth are adjusted to the same maximum. i After Kraws.)

—

R —— -
Figure 7-20 Effect of number of turns on measured field patterns. Helices have 12.2 pitch angle and
2,4, 6, 8 10 turns, Palterns shown are average of measured E,and E, patlterns, {After Kraus.}
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Figare 7-21 Half-power beam width of monofilar axial-mede helical antenna as a function of the
axial length and circumference in free-space wavélengths and also as a function of the number of turns
for C, = 1.0 and = 12.5° (fower scale). {After Krdus)

approximate directivity relation:’
P =15C2nS, ®

This calculation disregards the effect of minor lobes and the details of the
pattern shape. A more realistic relation is

D=~ 12C3nS, Y]

Restrictions are that (4) to (7) apply only for 0.8 < C; < 1.15, 12° < & < 14° and
n > 3. Note that from (4-8-3), D = 4nnS,.

The measured gains of King and Wong? for 12.8° monofilar axial-mode
helical antennas are presented in Fig. 7-22 as a function of helix length (L, = 55}

! It is assumed that the patterns of both feld components are of the same shape and are hgures-of-
revolution around the helix axis.

2 H. E. King and J. L. Wong, “ Characteristics of 1 10 8 Wavelength Uniform Helical Antennas,”

IEEE Tmn_._s, Anis. Prop., AP-28, 291, March 1980,
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Figure 7-22 Measured (dashed) gain curves of monofilar axial-mede helical antennas as a function
of relative frequency for different numbers of turns for & pitch angle of @ = 12.8°. (After H. E. King
and J. L. Wony, *“ Characteristics of 1 to 8 Wavelength Uniform Helical Antennas,” 1EEE Trans. Ants.
Prop., AP-28, 291, March 1980.) Calculated jsolid} gain curves ar¢ also shown for different numbers of
torns.

and frequency. Although higher gains are obtained by an increased number of
turns, the bandwidth tends to become smaller. Highest gains occur at 10 to 20
percent above the center frequency for which C, = 1. Although the gains in
Fig. 7-22 tend to be less than calculated from (7), they were measured on helices
with (L0824 diameter axial metal tubes.

Although pitch angles as small as 2°, as noted by MacLean and Kouycum-
jian,! and as large as 25°, as noted by Kraus, can be used, angles of 127 to 14°
{corresponding to turn spacings of 0.21 to 0.25% at C, = 1} are optimum. King
and Wong found that on helices with metal axial tubes, smaller pitch angles (near
12°) resulted in a slightly higher (1 dB) gain but a narrower bandwidth than
larger angles (near 14°).

Turning to other parameters, the pattern, axial ratio and impedance
(VSWR) performance as a function of frequency for a 6-turn, 14° pitch angle
monofilar axial-mode helical antenna are summarized in Fig. 7-23, This is the
same antenna for which the patterns are shown in Fig 7-19. The half-power
bearn width is taken between half-power points regardless of whether these occur

'T. 5. M. MacLean and R. G. Kouyoumjian, * The Bandwidth of Helical Antennas,” IRE Trans.
Ants. Prop., AP-T, 8379386, December 1959,
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Figure 7.23  Summary of measured performance of 6-turn, 14° monofilar axial-mode helical antenna,
The curves show the HPBW for both field compenents, the axial ratio and the VSWR on a 530} line
as a function of the refative frequency (or circumference € . Trends of (relative) resistance R and

reactance X are shown in the VSWR insct. Note the relatively constant R and small X for C; > 0.7,
(After Kraus)

on the major lobe or on minor lobes. This definition is arbitrary but is conve-
ment to take into account a splitting up of the pattern into many lobes of large
amplitude at frequencies outside the beam mode. Beam widths of 180° or more
are arbitrarily plotted as 180°. The axial ratio is the value measured in the direc-
tion of the helix axis. The standing-wave ratio is the value measured on a 53-Q
coaxial line. A transformer section 1/4 long at the center frequency is located at
the helix terminals to transform the terminal resistance of approximately 130 to
53 Q. Considered altogether, these pattern, polarization and impedance charac-
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teristics represent remarkably good performance over a wide frequency range for
a cir&ularly pelarized beam antenna.

The onset of the axial mode at a relative frequency of about 0.7 is very
evident with axial-mode operation, extending irom this frequency over at least an
octave for VEWR and axial ratio and almost an octave for pattern.

Several arrangements have been proposed to reduce the axial ratio and
VSWR to even lower values. These include a conical end-taper section by Wong
and King,' Donn,? Angelakos and Kajfez® and Jamwai and Vakil® and a fat

0]
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Relative frequency
tor circumference, G}

Figure 7-24 Reﬁeclion coeflicient and VSWR for an impedance-matched peripherally fed 10-turn,
138 monefilar axial-mode helical antenna as a function of relative lrequency (or circumference C,)
wilhout spiral lermination (solid) and with it (dashed). (4fter D. E. Baker, “ Design of a Broodband
Impedance Matching Section for Peripherally Fed Helical Antennas” Antenna Applications Sympo-
sium, Uriversity of {llinois, September f980)

'J. L. Wong and H. E. King, " Broadband Quasi-Taper Helical Antennas.” IEEE Trans. Ants: Prop.
AP-27, 72-78, January 1979

! C. Donn, "A New Helical Antenna Design for Better On-and-Of Boresipht Axial Ratic Per-
formance,” fEEE Trans. Anis. Prop., AP.18, 764-267, March 1980,

' D. ). Angelakos and D, Kajfez, *Modifications on the Axial-Mode Helical Antenna,” Proc. IEEE,
55, 558-559, April 1967.

*K. K. §. Jamwal and R. Vakil, “ Design Analysis of Gain-Optimized Helix Antennas for X-band
Frequencies,” Microwave J., 177-183, September 1985.



288 7 THE HELICAL ANTENNA

spiral termination by Baker.! The flat spiral adds no axial length to the helix.
The reflection coefficient (or VSWR) as measured by Baker for a 10-turn periph-
erally fed monofilar axial-mode helical antenna with and without the spiral ter-
mination is presented in Fig. 7-24. The improvement occurs at relative
frequencies above 1.1 which, however, is a region where the gain is decreasing.

A dielectric tube supporting a helical conductor may significantly affect per-
formance. The magnitude of the effect depends on the dielectric’s properties and
its geometry, especially the thickness of the tubing wall. For a peripherally fed
helix supported on a polyvinyl chloride {PVC) tube with ¢, = 2.70, Baker," using
the VSWR as a criterion, found that the relative frequency for the onset of the
axial mode shiflted from 0.72 without the tube to 0,625 with the tube for a ratio of
1.15. Thus, the effective relativé permittivity &, (with tube) = 1.32 (=1.15%),
making the terminal resistance at the center frequency 130 Q (=150/,/1.32). A
precision matching section designed by Baker converts this to 50 Q with mea-
sured VSWR < 1.2 (p, < —20 dB) over a 1.7 to 1 bandwidth. The helix wire is
wound in a groove of half the wall thickness machined with a computer-
controlled lathe. All dimensions of the helix, matching section and supporting
structure are specified in Baker's design.

7-5 AXIAL-MODE PATTERNS AND THE PHASE VELOCITY
OF WAVE PROPAGATION ON MONOFILAR HELICES.? As a
first approximation, a monofilar helical antenna radiating in the axial mode may
be assumed to have a single traveling wave of uniform amplitude along its con-
ductor. By the principle of pattern multiplication, the far-field pattern of a helix is
the produet of the pattern for 1 turn and the pattern for an array of n isotropic
point sources as in Fig. 7-25. The number n equals the number of turns. The
spacing § between sources is equal to the turn spacing. When the helix is long
{say, nS, > 1), the array pattern is much sharper than the single-turn pattern and
hence largely determines the shape of the total far-field pattern. Hence, the
approximate far-field pattern of a long helix is given by the array pattern.
Assuming now that the far-ficld variation is given by the array pattern or factor
and that the phase difference between sources of the array is equal to the phase
shift over 1 turn length L, for a single traveling wave, it is possible to obtain a
simple, approximate expression for the phase velocity required to produce axial-
mode radiation. This value of phase velocity is then used in pattern calculations.
The array pattern or array factor E for an array of n isotropic point sources
arranged as in Fig. 7-25 is given by (4-6-8). Thus,
_sin (ng/2)

E= sin (y/2) 0

' D. E. Baker, “Design of a Broadband Impedance Matching Section for Peripherally Fed Helical
Antennas,” Antenna Applications Symposium, University of Rlinois, September 1980,
2 I D. Kraus, “ The Helicai Antenra,” Proc. {RE, 37, 263-272, March 1949,
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To distant
point
ju 5w Figure 7-25 Array of isotropic sources.
DU S-S WP - | 4 each source representing 1 wrn of the
1 2 3 4 5 ] 7 axis hehx.
where n = number of sources and
=S5 cos¢+é e (D)
where S, = 2n5/1
In the present case, (2) becomes
L,
o= 2n Slcosqﬁ—-’; (3)

where p = v/c = relative phase velocity of wave propagation along the helical
conductor, v being the phase velocity along the helical conductor and ¢ being the
velocity of light in free space.

If the fields from all sources are in phase at a point on the helix axis (¢ = 0),
the radiation will be in the axial mode. For the fields to be in phase (ordinary
end-fire condition} requires that

¥ = —2mm 4
wherem=0,1,2,3,...

The minus sign in (4) results from the fact that the phase of source 2 is retarded
by 2zL./p with respect to source 1. Source J is similarly retarded with respect to
source 2, etc.

Now putting ¢ = 0 and equating (3) and (4), we have

Li_ s 4m ©)

When m = | and p = 1, we have the relation
L,—S,=1 o L-S=31 (6)
This is an approximate relation between the turn length and spacing required for

a helix radiating in the axial mode. Since for a helix I? = a*D? 4 §2, (6) can be
rewritten as

V28, + 1
ni=——‘?i or Ci=+28+1 )]

T
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Equation (7) is shown graphically by the curve marked C, = ./25,+ 1 in Fig.
7-10. The curve defines approximately the upper limit of the axial- or beam-mode
region. "

When m = 1, (5) is appropriate for a helix operating in the first-order (T})
transmission mode. When m = 2, {5) is appropriate for the T, transmission mode,
etc. A curve for m = 2 is shown in Fig. 7-10 by the line marked C, = 2./§; + L.
Hence, m corresponds 1o the order of the transmission mode on a helix radiating

a maximum field in the axial direction. The case of particular interest here is

where m = 1. :
The case where m = 0 does not represent a realizable condition, unless p
exceeds unity, since when m =0 and p=1 in (5 we have L = §. This is the
condition for an end-fire array of isotropic sources excited by a straight wire
connecting them {x = 907). However, the field in the axial direction of a straight
wire is zero so that there can be no axial mode of radiation in this case.
Returning now to a consideration of the case where m = 1 and solving (5)
for p, we have
TS5+

p (&)

From the triangle of Fig. 7-9, (8) can also be expressed as

1
Tsinat flcos 2)/C,]

P (9
Equation (9) gives the required variation in the refative phase velocity p as a
function of the circumference C, for in-phase fields in the axial direction. The
variation for helices of different pitch angies is illustrated in Fig. 7-26. These
curves indicate that when a helix is radiating in the axial mode (3 < C; < $) the
value of p may be considerably less than unity. This is borne out by direct mea-
surements of the phase velocity. In fact, the observed phase velocity is found to
be slightly less than catled for by (8) or (9). Calculating the array pattern for a
7-turn helix using values of p from (8) and (9) yields patterns much broader than
observed. The p value of (8) or (9) corresponds te the ordinary end-fire condition
discussed in Chap. 4. If the increased directivity condition of Hansen and
Woodyard is presumed to exist, (4) becomes

Y= - (znm + E) (10)
Now equating {10) and (3), putting ¢ = 0 and solving for p we have
L,
e SN 11
P=s, +m+ (112 i
For the case of interest m = 1 and
L
- (12)

P= 5 T (en+ 1)2n]
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Figure 7-26 Relative phase velocity p for different pitch angles as a function of the helix circum-
ference C, for the condition of in-phase ficlds in the axial direction.

For large values of n, (12) reduces to (8). Equation (12) can also be expressed as!

1
= Sin % + [(2n + D/2n)[(cos x)/C,]

P ¢13)
Using p as obtained from (12) or (13) to calculate the array factor yields patterns
in good agreement with measused patterns. The p value from (12) or (13) also is
in closer agreement with measured values of the relative phase velocity. Hence, it
appears that the increased directivity condition is approximalted as a natural con-
dition on helices radiating in the axial mode.?

Another method of finding the relative phase velocity p-on helical antennas
radiating in the axial mode is by measuring the angle ¢, at which the first
minimum or null occurs in the far-field pattern. This corresponds to the first null
in the array factor, which is at i, (sec Fig. 4-20). Then in this case (4) becomnes

¥ = —(2nm + o) (14)
Now equating {14) and (3} and putting m = 1 and solving for p, we have
L,

= = 15
P S, 008 by + |+ (Wro/2m) {9

' It is to be noted that, as » becomes large, this reiation (13) for increased directivity reduces ta (9],

2 The axial mode region is shown by the shaded (T, R,) area in Fig. 7-10. Helices with dimensions in
this region radiate in the axial mode. and (9), or more properly (13), applies. Qutside this region these
equatians generally do not apply.
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Figure 7-27 Helix showing points
T rand 4 at the conductor surface.

Three relations for the relative phase velocity p have been discussed for
helices radiating in the axial mode with transmission in the T, mode. These are
given by (9), (13) and (15). .

A fourth relation for p appropriate to the T, and higher-order transmission
modes on infinite helices has been obtained by Bagby! by applying boundary
conditions approximating a helical conductor- to a solution of the general wave
equation expressed in a new coordinate system he called “ helicoidal cylindrical
coordinates.” Bagby's solution is obtained by applying boundary conditions to
the two points ¢ and d in Fig. 7-27. His value of the relative phase velocity is
given by

C,
= t6
P mcos x+ hR sin o (t6)
where
2
HR = tan 2~ JmikR) a7

w1 (kR) Iy ((KR)

! C. K. Bagby, ~A Theoretical Investigation of Electro-magnetic Wave Propagation on the Helical
Beam Antenna,” Masler's thesis, Electrical Engineering Departmens, Ohio State University, 1948,
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Figore 7-28  Relative phase velocity p as a function of the helix circumference C; for 137 helices. The
solid curve is measured on a 13°, 7-turn helix. Curves 4, and A, are as calculated by Bagby for T,
and T, transmission modes on an infinite 13° helix. Curves B, and B, are calcuiated for in-phase
fields and curves €, and C, for increased directivity for T, and T, transmission modes. Curve I is
from data by Chu and Jackson as calculated for the T, transmission mode. {Afrer Kraus.)

where m = order of transmission mode (=1, 2, 3, ...) (m # 0)
R = radius of helix cylinder
kR = ./C? — (hR)
k = constant
J = Bessel function of argument kR

The variation of p as a function of C; for a 13° helix as calculated by (16)
and (17) for the case m = 1 is illustrated by the curve A, in Fig. 7-28. A curve for
the 7, transmission mode (m = 1) as calculated for the in-phase condition from
{9) is shown by B,. A curve for the increased directivity condition on a 13°, 7-turn
helix, with m = 1, is presented by C,.

Curves lor the T, transmission mode for each of the three cases considered
above are also presented in Fig. 7-28. In addition, a curve of the measured rela-
tive phase velocity on a 13°, 7-turn helix is shown for circumferences between
about 0.4 and 1.54 It is to be noted that in the circumference range where the
helix is radiating in the axial mode (3 < C; < %), the increased directivity curve,
of the three calculated curves, lies closest to the measured curve.! The measured
curve gives the valoe of the total or resultant phase velocity owing to all modes

' The increased directivity curve is the only curve calculated for a helix of 7 urns. The in-phase field
curve refers Lo no specific length while Bagby's curve is for an infinite hebix.
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present {T,, Ti, etc.) as averaged over the region of the helix between the third
and sixth turns from the feed end. The vertical lines indicate the spread, if any, in
values observed at one frequency. In general, each transmission mode propagates
with a different velocity so that when waves of more than one transmission mode
arc present the resuitant phase velocity becomes a function of position along the
helix and may vary over a considerable range of values.! When 2 < C, < § the
phase velocity as measured in the region between the third and sixth turns corre-
sponds closely to that of the T, transmission mode. The T, mode is also present
on the helix but is only important near the ends. When the ciccumference C, < 3,
the T, mode may be obtained almost alone over the entire helix and the mea-
sured phase velocity approaches that for a pure T; mode indicated by curve D in
Fig. 7-28, based on data given by Chu and Jackson.? This curve indicates that at
small circumferences the refative velocity of a pure T, mode wave attains values
considerably greater than that of light in free space. At C; =3, curve D has
decreased to a value of nearly unity, and if no higher-order transmission mode
were permissible, the phase velocity would approach that of light for Jarge
ciccumferences. However, higher-order modes occur, and, wher C; exceeds
about £, the resultant velocity drops abruptly, as shown by the measured curve
in Fig 7-28. This change corresponds to a transition from the Ty to the T,
transmission mode. For a circumference in the transition region, such as 0.74,
both T, and T, modes are of about equal importance.

When C, is abou! 4 or somewhat more, the measured phase velocity
approaches a value associated with the T, mode. As C, increases further, the
relative phase velocity increases inm an approximately linear fashion, agreeing
most closely with the theoretical curve for the increased directivity condition
(curve C,). When C, reaches about %, a still higher order transmission mode (T;)
appears to become partially effective, causing further dips in the measured curve.
However, the radiation may no longer be in the axial mode.

The formulas given for helical antennas operating in the first-order trans-
misston mode {m = 1} are summarized in Table 7-1.

As mentioned above, the approximate far-field pattern of a monofilar helix
radiating in the axial mode is given by the array factor for » isotropic point
sources, each source replacing a single turn of the hetix {see Fig. 7-25).

The normalized array factor is

. & osin(mp/2)
E=sn———""—
2n sin {{/2)
where i = 2a[5; cos ¢ — (L, /p)]

{18)

"I A. Marsh, " Measured Currert Distributions on Helical Antennas,” Proc. RE, 39, 668-675, June
1951,

* L. J. Chu and I. I3. Jackson, “ Field Theory of Fraveling Wave Tubes,” Prov, JRE, 36, 853-863, July
1944,
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Table 7-1 Relative phase velocities for first-order transmission
mode on helical antennas

Condition Relative phase velocity
In-phase fields {ordi d-fire) L :
n-phase fields {ordinary end-fire = ==
P ¥ P 5.+ 1 sin% + [(cos 2)iC,]
L L,
Tncreased directivily r

=5, 4 [2n + y2n]
1
= Sin a + [(2n + 12n][(cos 21/C,]
= L"‘
TS, 008 g + (Yrei2m) + L
[

Helicoidal eyhndrical coordinate p = ————
selulion cos 2+ hR sin 2

From first null of measured field patlern P

where AR is as given by (17)

The normalizing factor is sin (n/2n) instead of 1/n since the increased directivity
end-fire condition is assumed to exist (see Sec. 4-6d, Case 3). For a given helix, §,
and L; are known and p can be calculated from (12) or (13} ¥ is then obtained as
a function of ¢. From (18), these values of  give the field pattern.

As an illustration, the calculated array factor patterns for a 7-turn, 12° helix
with €, = 095 are shown in Fig. 7-29 for p values corresponding to increased
directivity and also in-phase fields and for p = 1, 0.9 and 0.725. A measured curve
(average of E, and E,) is shown for comparison. It is apparent that the pattern
calculated for the increased-directivity condition (p = 0.76) agrees most closely
with the measured pattern. The measured pattern was taken on a helix mounted
on a ground plane 0.884 in diameter. The calculated patterns neglect the effect of
a ground plane. This effect is small if the back lobe is small compared to the front
lobe, as it is for p = 0.802 and p = 0.76.

The sensitivity of the pattern to the phasc velocity is very apparent from
Fig. 7-29. In particular, we note that as little as a 5 percent difference in phase
velocity from that required for the increased directivity condition (p = 0.76) pro-
duces marked changes as shown by the patterns for p = 0.802 (5 percent high}
and p = 0.725 (5 percent low).

7-6 MONOFILAR AXIAL-MODE SINGLE-TURN PATTERNS. In
this section expressions will be developed for the far-field patterns from a single
turn of a monofilar helix radiating in the axial mode. It is assurned that the singte
lurn has a uniform traveling wave along its entire length. The product of the
single-turn pattern and the array factor then gives the total helix pattern.

A circular helix may be treated approximately by assuming that it is of
square c¢ross section. The total field from a single turn is then the resultant of the
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Figare 7-29 Array factor patterns for 12°, 7-tuta helix with €, = 0.95. Parterns are shown for p = I,
0.9, 0.802 (in-phase fields or ordinary end-fire condition), 0.76 {increased directivity} and 0.725. A
measured curve is also presented. All patterns are adjusted 10 the same maximum. The sensitivity of
the patiern to phase velocity is evident. A change of as lintle as § percent produces a drastic change in
pattern, as may be noted by comparing the pattern for p = 0.802 (5 percent high) and the one lor
p = 0.725(5 percent low) with the one for p = 0.76 which matches the measured pattern.

fields of four short, linear antennas as shown in Fig. 7-30a. A helix of square
cross section can, of course, be treated exactly by this method. Measurements
indicate that the difference between helices of circular and square cross section is
small.

Referring to.Fig. 7-31, the far electric field components, E,; and Eg7, in the
xz plane will be calculated as a function of ¢ for a single-turn helix.

Let the area of the square helix be equal to that of the circular helix so that

JrD

§="> {1

where g is as shown in Fig. 7-30a.

The far magnetic field for a linear element with a uniferm traveling wave is
given by (5-8-15). Multiplying (5-8-15) by the intrinsic impedance Z of free space,
putting y = (3n/2) + x + ¢, = 0 and b = g/cos a, we obtain the expression for
the ¢ component E,, of the far field in the xz plane due to ¢lement 1 of the
square helix as follows:

siny . oy
Ey =k — BA%!——-—BA’ 2
ol y! sin p {2)
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Figure 7-30 Square helix used in cajculating single-turn pattern.

where k = 10P%
2zr,
A=1—-pcosy
——%9
"~ 2pc cos «

The expressions for E,,, E,,, etc., due to elements 2, 3 and 4 of the square turn
are obtained in a stmilar way. Since the elements are all dissimilar sources, the
total ¢ component, E,r, from a single square turn is obtained by adding the

Figure 7-31 Field components with relation to single-turn
helix.
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fields from the four elements at each angle ¢ for which the total field is calcu-
lated. The sum of the fields from the four elements is then

siny . wr,
E¢r =k _A_ sin BA (-—BA i T)

+k51nBA SlnaSIn¢/[_BA”_I£_+%(SCOS¢+gsin¢_rl)]

A" 4pc 4
+ kY Gin A’ —BA'—E’»+9(M+gsm¢wrl)]
A 2pc ¢ 2 A
sin BA” sin a sin ¢ , 3o o{35cos¢d )]
+ k Ve [[—BA. ~ape + c (———~—4 T (3)

In .
where y=?+a+¢. ¥ o=

A=1—pcosy, A =1—pcos7y, A"=1—pcosy’

—x+ o, " = arccos (sin o cos )

M A

When a helix of circular cross section is being calculated, L = aD/cos in {3),
while for a helix of square cross section L = 4b.

If the contributions of elements 2 and 4 are neglected, which is a good
approximation when both a and ¢ are small, the expression for Egr is consider-
ably simplified, Making this approximation, leting k = | and r, = constant, we
obtain

Eyr = sin B4 [(~BA)

sin ¥

+ = sin BA' [[—BA' —2./nB + n(S, cos ¢ + /=D, sin 4)] (4)

Equation (4) applies specifically to helices of circular cross section, so that B in (4)
is D,

T 2pcos

&)

Equation (4) gives the approximate pattern of the ¢ component of the far
field in the xz plane from a single-turn helix of circular cross section.

In the case of the # component of the far field in the xz plane, only elements
2 and 4 of the square turn contribute. Putting k = 1, the magnitude of the
approximate 8 pattern of the far field of a single-turn helix of circular cross
section can be shown to be

sin 7" sin BA” cos o
A"(1 — sin? & cos? )12

x sin 4[n(S; cos ¢ — \/x D, sin ¢) — 2./ B] 6

where B is as given by (5) and ¥” and 4” are as in (3).

[Egr| =2

76 MONOFILAR AXIAL-MODE SINGLE-TURN PATTERNS 299

b=

(
(

Ear

a=12", n=1

Figure 7-32 Calcuiated patterns for £y and L,y fields of single turn of a 127 helix,

Teotal pattern
of ane turn
Eur

direction

Figure 7-3% Individual E, pailerns of e..-
ments | and 3 and total pattern of single
turn, E ;. The single turn is shown in plan
view {in the x2 plane of Fig. 7-30). The single
lurn and coordingle axes have been rotated
around the y axis so that the z direction
{¢p = 0y is toward the top of the page.
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As an example, the E ;. and E,, patterns for a single-turn 12° helix with

C, = 1.07 have been calculated and are presented in Fig. 7-32. Although the two
patterns are of different form, both are broad in the axial direction (¢ = 0).

The individual E, patterns of elements 1 and 3 of the single tarn are as
suggested in Fig. 7-33. One lobe of each pattern is nearly in the axial direction,
the tilt angle t being nearly equal to the pitch angle « The individual patterns
add to give the E ; pattern for the single turn as shown (see aiso Fig. 7-32)

7-7 COMPLETE AXIAL-MODE PATTERNS OF MONOFILAR
HELICES. By the principle of pattern multiplication, the total far-field pattern
of a helix radiating in the axial mode is the product of the single-turn pattern and
the array factor E. Thus, the total ¢ component E, of the distant electric field of
a helix of circular cross section is the product of (7-6-4) and (7-5-18) or

_ E,=E,E (1)
The total § component £, is the product of (7-6-6) and (7-5-18) or
Ep=E, E {2)

As examples, the approximate E, and E, patterns, as calculated by the .

above procedure, for a 12°, 7-turn uniformn helix of circular cross section with
C, = 107 are presented in Fig. 7-34 at (a) and (c). The helix is shown at (g), with
E, in the plane of the page and E, normal to the page. The array factor is shown
at (b). The single-turn patterns are as presented in Fig. 7-32. The value of p used
in these calculations is approximately that for the increased directivity condition.
The product of the single-turn patterns {Fig. 7-32) and the array factor pattern at
(b) yields the total patterns at () and (c). The agreement with the measured pat-
terns shown at (d} and (f) is satisfactory. .

Comparing the patterns of Figs. 7-32 and 7-34, if is to be noted that the
array factor is much sharper than the single-turn patterns. Thus, the total i, and
E, patterns (a) and (c} (Fig. 7-34) are nearly the same, in spite of the difference in
the sipgle-turn patterns. Furthermore, the main lobes of the E, and E, patterns
are very similar to the array factor pattern. For long helices (say, nS; > 1) it is,
therefore, apparent that a calculation of only the atray factor suffices for an
approximate pattern of any field component of the helix. Ordinarily the single-
turn pattern need not be calculated except for short hetices.

The far-field patterns of a helix radiating in the axia! mode can, thus, be
calculated to a2 good approximation from a knowledge of the dimensions of the
helix and the wavelength. The value of the relative phase velocity used in the
calculations may be computed for the increased-directivity condition from the
helix dimensions and number of turns.

The effect of the ground plane on the axial-mode patterns is small if there
are at least a few turns, since the returning wave on the helix and also the back
lobe of the outgoing wave are both small. Henoe, the effect of the ground plane
may be neglected unless the helix is very short {rS; < ).
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Avray
factor
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Calculated Cattulated
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a=12"
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- C,=1.07

@) ) |_ )

Figwre 7-M Comparison of complete calculated patterns (product of single-turn pattern and array
factor) with measured patterns for a 12%, 7-turn helix with ¢, = 107 radiating in the axial mode.
Agreement is satisfactory.

The approximaie pattern of an axial-mode helix can be calculated very
simply, while including the approximate effect of the single-turn pattern, by
assuming that the single-turn pattern is given by cos ¢. Then the normalized.
total radiation pattern is expressed by

_ (o 90°) sin (mg/2) ’
E——(sm n)sin(wﬂ) cos ¢ (3)
where » = number of turns and

¥ = 360°[S,(1 — cos ) + (1/2n)] 4)

The value of § in (4) is for the increased-directivity condition and is
obtained by substituting (7-5-12) in (7-5-3) and simplifying. The first factor in (3)
is a normalizing factor, i.e., makes the maximum value of E unity.

7-8 AXIAL RATIO AND CONDITIONS FOli CIRCULAR
POLARIZATION OF MONOFILAR AXIAL-MODE HELICAL
ANTENNAS.! In this section the axial ratio in the direction of the helix axis

' For a general discussion of elliptical and circular polarization see Secs. 2-34 through 2-37; also see
I D. Kraus, Radic Asironomy, 2nd ed., Cygnus-Quasar, 1986, chap. 4.
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Figure 7-35 Ficld components as viewed from the
helix axis.

will be determined, and aiso the conditions necessary for circular polarization in

this direction will be analyzed. =

Consider the helix shown in Fig. 7-35. Let us caiculate the electric field
components E, and £y, as shown, at a large distance from the helix in the z
direction. The helix is assumed to have a singie uniform traveling wave as indi-
cated. The relative phase velocity is p. The diameter of the helix is D and the
spacing between turns is S. Unrolling the helix in the xz plane, the relations are
as shown in Fig. 7-36. The helix as viewed from a point on the z axis is as
indicated in Fig. 7-37. The angle ¢ is measured from the xz plane. The coordi-
nates of a point @ on the helix can be specified as r, & z. The point @ is at a
distance ! from the terminal point T as measured along the helix. From the
geometry of Figs. 7-36 and 7-37, we can write

h=1sin
z,—h=2z,—Isin«

s ré (1)
& = arctan — = arccos —
rD

{

ré =1lcos

where 2, is the distance from the origin to the distant point P on the z axis.
' At the point P the ¢ component E, of the electric field for a helix of an
integral number of turns # is

2en 7
E,=E, J sin £ exp I:jm(t . Isina_ L)] dé (2)
o [ I pe

where E, is a constant involving the current magnitude on the helix.
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Helix conductor

lr Figure 7-36 Geometry for calculating fields in
To z, the z direction.

From (1) the last two terms of the exponent in (2) may be rewritten. Thus,

in o 1 r
iﬂu—i=£0ma— )=£2 )
¢ pc ¢ p cos ¢
where
g =tan & — (4
pcosx

When o =0, the helix becomes a loop and g = —l/p. The relation being
obtained is, thus, a gencral one, applying not only to helices but aiso to loops as
a special case. Equation (2) now reduces to

2nn

Q=QJWM1 sin & & de (5)

Li]

where quantities independent of £ have been taken outside the integi’al and where

ﬁ:

w 2=n
¢ A

1
and k=firg=L; (sin a— ;) (6)

Figure 7-37 Helix of Fig. 7-35 as viewed from the positive z axis.
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On integration {5} becomes

El
Be=

(e — 1) )

where E| = Ej ¢/~ #zp

In a similar way we have for the 8 component Ey of the electric field at the

point P,
_ Znn . z, lsina |
Eyg=E, cos {exp|joft — 24 —— _ —}| g (8)
o c ¢ pc
Making the same substitutions as in (2), we obtain from (8)
JE k
Eg =7 "™ -1 ®
kP -1
The condition for circular polarization in the direction of the z axis is
E -
_2 - .
’ E +j (10)
The ratio of (7) to (9) gives
E 1
Se__-__J .
E, jk k ()

Accordingly, for circular polarization in the axial direction of a helix of an inte-
gral nimber of turns, k must equal +1.

Equation (11) indicates that E, and Ej; are in time-phase quadrature. There-

fore, the axial ratio AR is given by the magnitude of {11) or

1E,| 1] 1
AR =" | _| =~
B~ k| = & 2

The a)fia] ratio will be restricted here to values between unity and infinity, Hence,
if {12) is less than unity, its reciprocal is taken. '

Substituting the value of k from (6} into (12) yields

1
B | L,[sin x — (1/p)Hi

|
L, si — -
(sm 4 P)} (14)

Either (13) or (14) is used so that 1 < AR = oo,

From (13) and (14), it appears that the axial ratio can be caiculated from the
turr} length L, and pitch angle ¢ of the helix, and the relative phase velocity p. If
we Introduce the value of p for the condition of in-phase fields (see Table 7-1), it
is fcn:u?d that AR = [. In other words, the in-phase field condition is also the
condition for circular polarization in the axial direction.

AR

(t3)

or AR =
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This may also be shown by noting that (11) satisfies the condition for circu-
lar polarization when k = — 1, or

1
Ljlsine—-]=—1 15
A( p) (15)
Solving (15) for p, we obtain
L,
Pes+1 (16)

which is identical with the relation for in-phase fields (ordinary end-fire
condition).

OQur previous discussion on phase velocity indicated that p followed more
closely the reiation for increased directivity than the relation for in-phase fields.
Thus, introducing p in (14) for the condition of increased directivity, we obtain

+1

AR (on axis) = 2= (17
where n is the number of turns of the helix. If n is large the axial ratio approaches
unity and the polarization is nearly circular.!

When 1 first derived (17) in 1947, it came as a pleasant surprise that the
axial ratic could be given by such a simple expression.

As an example, let us consider the axial ratio in the direction of the helix
axis for a 13° 7-turn helix. The axial ratio is unity if the relative velocity for the
condition of in-phase fields is used. By (17) the axial ratio for the condition of
increased directivity is 15/14 = 1.07. This axial ratio is independent of the fre-
quency or circumference C, as shown by the dashed line in Fig. 7-38. In this
figure, the axial ratio is presented as a function of the helix circumference € 4 in
free-space wavelengths.

If the axial ratio is calculated from (13} or (14), using the measured value of
p shown in Fig. 7-28, an axial ratio variation is obtained as indicated by the solid
curve in Fig. 7-38. This type of axial ratio versus circumference curve is typical of
ones measured on helical beam antennas. Usually, however, the measured axial
ratio increases more sharply as C; decreases to values less than about 3. This
difference results from the fact that the calculation of axial ratio by (13) or (14)
neglects the effect of the back wave on the helix. This is usually small when the
helix is radiating in the axial mode but at lower frequencies or smaller circum-
ferences (C; < 3) the back wave is important. The back wave on the helix pro-
duces a wave reflected from the ground plane having the opposite direction of

' With circularly polarized feed an AR = | can be obtained on the axis for a helix of any length
according to R. G. Yaughan and ). B. Andersen {* Polarization Properties of the Axial Mode Helix
Antenna,” [EEE Trans. Ants. Prap., AP-33, 10-20, January 1985). They also deduce the axial ratio as
a function of the off-axis angle.
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Figure 7-38 Axial ratio as a
function of helix circumference
€, for a 13°, 7-turn monofilar
1 L L L 1 i et L axial-mode helical antenna. The
4 .5 6 7 B 9 1.0 111213 1.4 1.5 dashed curve is from (17). (After

Helix circumference, O, Kraus)

field rotation to that produced by the outgoing traveling wave on the helix. This
causes the axial ratio to increase more rapidly than indicated in Fig. 7-38.

The foregoing discussion applies to helices of an integral number of turns,
Let us now consider a long helix where the number of turns may assume non-
integral values. Hence, the length of the helical conductor will be specified as ¢,
instead of 2an, It is further assumed that k is nearly unity, Thus, (5) becomes

s
Es = 5 J. '[eﬂunf — Y gr (18)
% )b
Since k = ~ 1,k + 1 > (3 and it follows that

MRt R~ ] 4tk + 1DE, (19

Now integrating (18) and introducing the condition that k is nearly equal to —1
and the approximation of (19), we have

El e}lk—llél |
= 22 jE, — 20
E, 2 (J":l k_1 (20)
Similarly the 8 component E, of the electric field is
El éj(l—llh —1
— T— g _— 21
Ey=+ % (JCl + r— 1 21

When the helix is very long
G2l
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and (20) and {21} reduce to

Eé,

E"=_jT and E‘.,=+Elé

5 (22)

Taking the ratio of E, to E,,
== 23)

which fulfills the condition for circular polarization.

Still another condition resulting in circular polarization is obtained when
{k + 1)}¢, = 2am, where m is an integer. This condition is satisfied when either the
positive or negative sign in k + 1 is chosen but not for both,

To summmarize, the important conditions for circular polarization are as
follows:

1. The radiation in the axial direction from a helical antenna of any pitch angie
and of an integral number of 1 or more turns will be circularly polarized if
k = — | {in-phase fields or ordinary end-fire condition).

2. The radiation in the axial direction from a helical antenna of any pitch angle
and a large number of turns, which are not necessarily an integral numbser, is
nearly circularly polarized if & is nearly - 1.

79 WIDEBAND CHARACTERISTICS OF MONOFILAR
HELICAL ANTENNAS RADIATING IN THE AXIAL MODE. The
helical beam antenna' has inherent broadband properties, possessing desirable
pattern, impedance and polarization characteristics over a relatively wide fre-
quency range. The natural adjustment of the phase velocity so that the fields
from each turn add nearly in phase in the axial direction accounts for the persist-
ence of the axial mode of radiation over a nearly 2 to | range in frequency. If the
phase velocity were constant as a function of frequency, the axial-mode patterns
would be obtained only over a narrow frequency range. The terminal impedance
is relatively constant over the same freguency range because of the large attenu-
ation of the wave reflected from the open end of the helix. The polarization is
nearly circular over the same range in frequency because the ¢condition of fields.in
phase is also the condition for circular polarization.

As shown in Fig, 7-39a, the dimensions of a helix in free-space wavelengths
move along a constant pitch-angle ling as a function of frequency. If F, is the
lower frequency limit of the axial mode of radiation and F, the upper frequency
limit of this mode, then the range in dimensions for a 10° helix would be as
suggested by the heavy line on the diameter-spacing chart of Fig. 7-3%a. The
center frequency Fy is arbitrarily defined as F, = (F, + F,)/2.

! Or monofilar axial-mode helical antenna.
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Figure 7-39 Diameter-spacing
3 ] ] 1 charts lor monofilar helices with
0.1 0.2 0.3 0.4 0.5 measured performance contours
Spacing, 5. 9 (b) for the axial mode of radiation.

The properties of a helical beam ani¢nna are a function of the pitch angle.
The angle resulting in a maximum frequency range F, — F; of the axial mode of
radiation is said to be an “optimum ™ pitch angle. To determine an optimwm
angle the pattern, impedance and polarization characteristics of helical antennas
may be compared on a diameter-spacing chart as in Fig. 7-39b. The three con-
tours indicate the region of satisfactory pattern, impedance and polarization
values as determined by measurements on helices of various pitch angle as a
function of frequency. The axial length of the helices tested is about 1.64 at the
center frequency, The pattern contour in Fig. 7-39F indicates the approximate
region of satisfactory patterns. A satisfactory pattern is considered to be one with

a major lob¢ in the axial direction and with relatively small minor lobes. Inside

the pattern contour, the patterns are of this form and have half-power beam

b gt B ek SR
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widths of less than 60° and as small as 30°. Inside the impedance contour in
Fig. 7-39b the terminal impedance is relatively constant and is nearly a pure
resistance of 100 to 150 Q. Inside the axial ratio contour, the axial ratio in the
direction of the helix axis is less than 1.25. Note that all contours lic below the
line for which D, = ./2S; + 1/=. This line may be regarded as an upper limit for
the beam mode. It is apparent that the frequency range F, — F, is small if the
pitch angle is either too small or too large. A pitch angle of about 12 or 14°
would appear to be “optimum™ for helices about 1.64 long at the center fre-
quency. Since the properties of the helix change slowly in the vicinity of the
optimum angle, there is nothing critical about this value. The contours are arbi-
trary but are suitable for a general-purpose beam antenna of moderate direc-
tivity. The exact values of the frequency limits, F, and F,, are also arbitrary but
are relatively well defined by the close bunching of the contours near the fre--
quency limits.

Based on the above conclusions, I constructed a 14°, 6-turn helix and mea-
sured its properties. The helix has a diameter of 0.314 at the center frequency
{400 MHz). The diameter of the conductor is about 0.024. Conductor diameters

_ of 0.005 to 0.054 can be used with little difference in the properties of this helix in

the frequency range of the beam mode.’

The measured patterns between 275 and 560 MHz are presented in Fig.
7-19. It is apparent that the patterns are satisfactory over a frequency range from
300 MHz (C; = 0.73) to 500 MHz (C; = 1.22).

A summary of the characteristics of this antenna are given in Fig. 7-23 in
which the half-power beam width, axial ratio and standing-wave ratio are shown
as a function of the helix circumference. -

7-10 TABLE OF PATTERN, BEAM WIDTH, GAIN,
IMPEDANCE AND AXIAL RATIO FORMULAS, Expressions devel-
oped in tl‘icI preceding sections for calculating the pattern, beam width, directivity,
terminal resistance and axial ratio for axial-mode helical antennas are sum-
marized in Table 7-2. These relations apply to helices for 12° <2 < 15% } <
€, <% and n > 3 or to the more specific restrictions listed in the footnote to the
table.

7-11 RADIATION FROM LINEAR PERIODIC STRUCTURES
WITH TRAVELING WAVES WITH PARTICULAR REFERENCE
TO THE HELIX AS A PERIODIC STRUCTURE ANTENNA.
Radiation from continuous linear antennas carrying a traveling wave was dis-
cussed in Sec. 5-8. Although the helical beam antenna consists of a continuous

! Design data for a 12.5° helix ace given by J. D. Kraus, “ Helical Becam Antenna Design Techaiques,”™
Communications, 29, September 1949,
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Table 7-2 Formulas for monofilar axial-mode helical
antennas '

. ¥y sin [mﬁ@
.| E= (sm n_) Si_ﬂ[.lil,'rzl cos ¢

1
' where ¢ = 360“[8,.(1 — o5 @) + ﬁ]

Patiern

52¢
Beam width (hall-power) HPBW = — . —
See restrictions Ci/nS,;

115°
Beam width {first nulls) BWFN = -
Ses restriclions . x/”_sa
Directivily {or gaint) D =12C%nS,
See resluictions
Terminal resistance R=140C; jaxial feed)
See restrictions R=150//C;Q (peripheral feed)

In+1 L
Axial ratio {on axis) AR = iz -2 (increased directivity)
)
. , ) . 1 i

Axial ratio {on axis) AR = [ L,| sin « — r {p unrestricted)

n = number of turms of helix
€, = circumterence in free-space wavelengths
§, = spacing between turns in frce-space wavelengths
L., = (urn length in free-space wavelengths
« = pitch anple
p = relalive phase velocily
= angle with respect to helix axis
Restriction for beam width and directivity: 08 = C; < LIS, 127 <2< 147,
nx 3
Restriction for terminal resistance: 0.8 < €, < 1.2, 1P <a < 14°n 2 4

1 Assurmng no losses.

conductor carrying a traveling wave, it is also a periodic structure with period
equal to the turn spacing as considered in Sec. 7-5.

Now let us develop the periodic structure approach in a more general way
which illustrates the relation of helical antennas to other periodic-structure
{dipole) antennas.’

A linear array of n isotropic point sources of equal amplitude and spacing is
shown in Fig. 7-40 representing a linear periodic structure carrying a traveling
wave. As discussed previously the phase difference of the fields from adjacent
sources as observed at a distance point is given by

¢=2—nScos¢—5 (1}
Ao

Although the helix is a periodic structure, it is continuous. The dipole arrays are discontinuous.
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To distant
paint

Bound or

uided wave . ; .
9____p Figure 7-d40 Linear array of » isolropic

Array axis 5 .
- w———a  point sources of egual amplitude and-

P

1 2 3 4 — @=0 spacing, S, representing a linear periodic
Velocity, v structurs carrying a traveling wave.
where § = spacing between sources, m
iy = free-space wavelength, m
¢ = angle between array axis and direction of distant point, rad or deg

& = phase difference of source 2 with respeet to source 1, 3 with respect
to 2, etc., rad or deg

We assume that the array is fed by a wave traveling along it from left to
right via a guiding structure which may, for example, be an open-wire transmis-
sion line, a waveguide or a helix.! The phase constant of the traveling wave is
given by

o

i =.2_:rr (rad m™ %) = 360
40P Aop
where i, = free-space wavelength, m
p = vic = relative phase velocity, dimensionless
¢ = wave velocity, ms !
¢ = velocity of light, m s~

(degm ") @

It

H

The phase difference between sources is given by

) 360°
5= 2% 5 rad) = 22 5 (deg) (3)
i ‘oD

of &)

where 5 = spacing between sources, m

In general, for the fields from the n sources to be in-phase at a distant point
requires that

W =2nm {rad or deg} (4)

where m = mode number = 0, 11, 2, etc.

' We assume a uniform traveling wave. Although such a wave is approximailed with a monofilar
axiat-mode helix, it is not necessarily realized with the dipole arrays presented in this section without
the addition of suitable impedance matching networks (not shown). See Sec. 11-10 on Phased Arrays
and Sec. 16-21 an Leaky Wave Antlennas.




312 7 THE HELICAL ANTENNA

Introducing (3) and (4) into (1) yields

2n 2n
Ztm=-—S8Scos¢p —— 8§ (5)
Ag ¢ Ao p
or 2mm = P, 5 cos ¢ — BS (6)

. 2 : '
where fi; = )_rr = phase constant of free-space wave, rad m™!
i
For mode number m = 0, the phase difference of the fields from adjacent sources

at a ‘distant point is zero; for m = 1, the phase difference is 2n; for m = 2, the
phase difference is 4x; etc,

2
g=-"=L =phase constant of guided wave, rad m™*

AP .
B, § = electrical distance between sources for a free-space wave, rad
BS = electrical distance between sources for the guided wave, rad
B, S cos ¢ = electrical distance between sources for a free-space wave in direction
of distant point

From {6) we have

2nm

ﬁo°08¢=ﬂ+T N

or cos¢———£+——=- (8)
Let us now consider several examples.

Example 1 Mode number m = 0. For different relative phase velocities p, the beam
angles ¢, as given by (8), are as tabulated:

Beam
Relative phase velocity, p cos ¢ ¢ direction
le=1¢) 1 0" End-fire
0 V] 90 Broadside
— k(¢ = ¢ with wave right-to-left) -1 1807 Back-fire
<1 =1 Imaginary  No beam

For the last entry (p < 1), ¢ is imaginary. This implies that all of the wave energy is
bound to the array (guided along ity and that there is no radiation (no beam).

Summary. For p values from +1 to- +w and —a0 to —1, the beam swings from
end-fire (¢ = 0°) through broadside (¢ = 90°) to back-fire (¢ = 180°). For p values
between — { and +1(—1 < p < 1} ¢ is imaginary (no radiation). We note that these
results are independent of the spacing S.
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Example 2 Mode mumber m = —1. Relative phase velocity p =1 (v = c). Fields
from adjacent sources have 2m (=360} phase difference at a distant point in the
direction of the beam maximum. For different spacings S, the beam angles ¢, as
given by (R), are as tabulated:

Beam
Spacing S cos ¢ & direction
Ao 0 o°0° Broadsidet
il -1 180° _Back-fn‘ei

t For Lhis case, there are also equal beams end-fire
(¢ = 0°) and back-fire (¢ = [80%),

§ For this case, there is an equal end-fre lobe
i = 0%

Summary. For spacings between 1,/2 and iq the beam swings between 90 and 180°,
Larger spacings are required to swing the beam to angles less than 90° but other
lobes also appear.

Example 3 Mode munber m = — 1. Relative phase velocity p = } (slow wave). For.
different spacings S, the beam angles ¢, as given by (), are as tabulated:

Spacimg 5 00;& ¢ Beam direction

1y 1 07, 90°, 18¢° End-fire, broadside
) and backfire
" Agf2 0 A Broadside

Aof3 -1 180° Back-fire

Semmary. For spacings between A,/3 and i, the beam swings from back-fire (136°)
through broadside (90°) to end-fire {0°), but for § = i, broadside and back-fire lobes
also appear. For spacings greater than A, or less than iy/3, ¢ is imaginary (no
beam). .

Example 4 Mode sember m = — 1. Relative phase velocity p = 4 (slow wave). For

different spacings §, the beam angies ¢, as given by (8), are as tabulated:

Beam
Spacing 5 cos ¢ ] direction
A4 1 B End-fire
/8 0 90" Broadside
Ay6 -1 180° Back-fire
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1.0 —
0.8
Example 2

4
=3

o
s
Y

Example 4

=
ra
T

£pacing in free-space wavelengths, S/

Figuré 741 Relation of spacing and

0° 30° 60" 90" 120° 150° 180"  heam angle for linear arrays with trav-
End Broad- Back  eling waves of relative phase velocities
fire side lire p~1, 4 and ! (Examples 2, 3 and 4)

Beam angle, ¢ a1l with mode number m = — 1.

Summary. For spacings between 4,/4 and A5/6 the beam swings from end-fire,
through broadside to back-fire. For spacings less than 4,/6 or more than Ay/4, ¢ is
imaginary (no beam}.

The results of Examplés 2, 3 and 4 are shown graphically in Fig. 7-41.

Another way of analyzing an array, and periodic structures in geaeral, is to
plot the elcctrical spacing f,S of the free-space wave (as ordinate) versus the
electrical spacing fS of the guided wave traveling along the array (as abscissa).
Dividing both coordinates by Zn, we obtain S/4, as ordinate and S/{p4o} =8/ as
abscissa (where i = pio = wavelength on the array). This type of S-§ diagram' is
presented in Fig. 7-42, illustrating the three arrays of Examples 2, 3 and 4 {shown
also in the $-¢ diagram of Fig. 7-41).

For a relative phase velocity p =1, §/A = Siky, and the array operates
along the p = ! line {at 45° to the axes). Back-fire occurs at §/i, = 1 and broad-
side at §/4, = 1 (Example 2).

For a relative phase velocity p = 4, the array operates along the p = 4 line
with back-fire at S/, = 1, broadside at §/4, = } and end-fire at S/ie = 1 at right
edge of diagram (Example 3).

! Some authors use k for fy and refer 10 the graph as a k-f diagram, also called a Brillowin diagram
after Leon Brillouin, Ware Propagation in Periodic Structures, McGraw-Hill, 1946.
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For a relative phase velocity p = £, the array operates along the p = % line
with back-firc at §/i, = 1 broadside at S/4, = 1 and end-fire at S/i; = 1
(Example 4). For a higher mode number m = —2, the array again produces

“beams swinging from back-fire at S/2p = 1, through broadside al S/i, =%to’

end-fire at S/7, = 4 (off diagram at nght}.

Let us consider several more examples of traveling-wave periodic-structure
arrays. On an §-5 diagram each type of array occupies a unique location or niche
which is characteristic of the antenna’s behavior. Differences between arrays are
clearly evident from their locations on the diagram.

Example 5 Scanaing array of dipoles with § = 4p at center frequency (Fig. 7-43)

Beam scanning is by shifting frequency. Physical element spacing is consiant. Array

is fed from the left end with a 2-wire transmission ling {p = 1). The mode number
m = — 1,50 (8) becomes

1 1 ( 1

S @=L TS, St

9)

At the center frequency S =%, and from (9} cos ¢ =0 and ¢ =90" (beam
broadside). Halving the frequency makes § = 4,/2 and ¢ = 180" (beam back-fire).
Doubling the frequency makes § =24, and ¢ = 60° {only 30° beyond broadside).
To swing the beam further toward end-fire requires a further increase m frequency.
The position of this scannihg array is shown in Fig. 7-42 (line labeled Examples 2
and 5). It is 1o be noted that there are ather lobes present not given by (9).

Example 6 Scaoning areay of alternately reversed dipoles with § = A,/2 at center
frequency (Fig. 7-44). Beam scanning is by shifting Irequency. Physical element
spacing is constani. Array is fed from the left end with a 2-wire iransmission hne
{p = 1} The mode number m = —1, 50 (8) becomes

1

1
28/ig (10)

cosp=1—

Al the center frequency § = io/2 and [rom (10} cos ¢ = 0 and ¢ = 90° (beam
broadside). Halving the [requency makes § = 2,/4 and ¢ = 1807 {beam back-fire).

Doubling the frequency makes § = 2, swinging the beam to ¢ = 60°. The position
of this scanning array is shown in Fig. 7-42.

Example 7 Scanning array of dipoles with S = 4,/2 at center frequency with slow
wave (p = {) (Fig. 7-45}. Beam scanning is by shifiing frequency. Physical element

l ) I‘/I:).ipclle.-r.\.‘I i .
F——] | [

2 gxample 5 3 4...n

Figare 743 Scanning array of dipoles with § = A, at center frequency, relative phase velocity
"p=1 (v =c) and mode number m= —J. The beam angle ¢ (with respect 10 dipole 1) is
outward from the page. (Example 3.
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ﬂpoles
N\

¢ ¢ ... Figue 744 Scanning array of altemately
- g——— ---  reversed dipoles with § = 45/2 at center fre-
le— § —..| ve€ quency, relative phase velocity p=1 and
: , 3 N . ml?dc aumber m = —4. The heam angle ¢
o {with respect to dipole 1) is outward from the

Example 6 page. {Example 6.)

spacing is constant. Acray is fed from the left end by a 2-wire transmission line with
line length 2§ between dipoies se that p = 4. The made number m = —1, so (8)
becomes

]
m5¢=2—§;}—0 (”)

At the center frequency § = ig/2 and from {11) ¢ = H0° {beam broadside). Reducing
the frequency so § = 4y/3 makes ¢ = 180° (beam back-fire). Doubling the frequency
makes § =i, and ¢ = 0" {beam end-fire). The position of this scanning array is
shown in Fig. 7-42 {line labeled Examples 3 and 7).

-
Ex:_lmple 8 Scanning array of alternately reversed dipoles with 5 = ip/4 at cemter
frequency with slow wave (p = 3} (Fig. 7-46). Beam scanning is by shifting frequency.
Physical element spacing s constant. Array is fed from the left end by a 2-wire
transmission line with line length 25 between dipoles so that p = 1. The mode
number m = — 4, so {8} becomes

1

co! =2
S ¢ 2874,

(12)

At the center frequency S = Ao/4 and from (12) ¢ = 90° {beam broadside). Decreas-

‘ing the frequency to § makes § = 4,/6 and ¢ = {80° {(beam back-fire). Doubling the

frequency makes S = iy/2 and ¢ = 07 (beam end-fire). The position of this scanning
array is also shown in Fig. 7-42,

Dipales

AT

Example 7

Figure 7-45 Scanning array of dipoles with § = 4,/2 at center frequency, relative phase veloc-
ity p = 4 (slow wave] and mode pumber m = — L. (Example 7}
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Dipoles

Example B

Figure 7-46  Scanning array of alternately reversed dipoles with § = » 4 at cenier frequency,
relative phase velocity p = 4 (slow wavel and mode number m = — & (Example 8.}

Now let us consider the monofilar helical antenna in comparison te the

above examples of other periodic structure arrays with traveling waves.

Example 9 Monofilar axial-mode helical antenna with turn-spacin_g S = igi4 and
circumference C = /4, at center frequency {Fig. 7-47). As discussed in .Scc. 7—5: Ithc
monofilar axial-mode helical antenna operales in the increased-directivity condition
resulting in a supergain end-fire beam {¢ = 9°). The mode number m = —1 and
from (5} we have for ¢ = 0" that

—211—-—IE=2_—-HS—EE§ (13}

LG ig P

where n = number of turns ‘ _ .
p = lvfc) sin a = relative phase velocity of wave in direction of helix axis {not
along the helical conductor as in Sec. 7-5)
o = pitch angle

Rearranging (13) we obtain

po—— (14)
- 2n+1 1
n Siig
For large n,
1

—— 15
P T T1iS/0)) s

Ground plane

Figere 747 Monofilar  axial-mode
W m—“ helical antenna which locks on end-fire
/ {# = @) with increased direclivity owver

direction
Coaxial k§'i {=0" more than an octave frequency range by
line an aulomatic shift in relative phase
velocity p (see Fig. 7-42). The mode
Example 9 numberm= —1.
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Thus, end-fire {¢ = 0°) with § = i,/4 requires that p=020. If the frequency
decreases so that § = 4,/5(a 25 percent change in frequency) we have from {5} that

s p=-——=——--5=0 {16)

making ¢ = 90" (beam broadside). However, with [requency change the beam does
not swing broadside but remains locked on end-fire (¢ = 07) because the phase veloc-
ity changes automatically by just the right emount to rot only compensate for the
frequency change but also to provide increased directivity and supergain. This is one of
the very remarkable properties of the monofilar axial-mode helical antenna.

The increased-directivity condition involves not only the turn spacing § but
also the number of turns n. However, for large »n the difference in p for the two
end-fire conditions is small. Thus, for large n we find from (15) that p values range
from about 0.25 for § = 4y,/3 through 0.20 for § = iy/4 to 0.167 for § = 4,/5,
locking the beam on end-fire with supergain over a frequency range of about 2 te 1,
which is in marked contrast to the beam-swinging of the scanning arrays discussed
above. The position of the monofilar helical antenna over a 2 to 1 frequency range is
shown in Fig. 7-42 for n = 4, 8 and 16 turns. For very large n, the position moves
along the end-fire line which intersects $/4 = 1 on the §/i, =0 axis. We note that
while other arrays move along consiant p lines as the frequency changes, the mono-
Flar axial-mode helical antenna moves along a constant beam-angle (end-fire) line,
cutting across lines of constant p value.

Another remarkable property and great advantage of the monofitar helical
antenna is that the input impedance is an almost constant resistance over an octave
bandwidtlf the resistance being easily set at any convenient value from 50 to 150 Q.
This is in contrast to the large impedance fluctuations of the ahove dipole arrays
with change in frequency.

7-12 ARRAYS OF MONOFILAR AXIAL-MODE HELICAL
ANTENNAS, With arrays of monofilar axial-mode helical antennas the
designer must strike a bala ice between the number and length of helices needed
to achieve a desired gain. As discussed in Sec. 4-8 the choice is between more
lower-gain antennas and fewer higher-gain antennas appropriately spaced. As an
illustration consider the following problem.

Example. Design a circularly polarized antenna using one or more end-fire elements
to produce a gain of 24 dB for operation at a given wavelength 4.

_Solution. The highest end-fire gain is obtained with the increased-digectivity condi-
tion which is automatic with monofilar axial-mode helical antennas. From (7-4-7)
for x = 12.7* and C, = 1.05, the required length of a single helix is

252

L=nS= it~

194 n

‘requiring an 80-turn helix (Fig. 7-48q).
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Side view Front view
T | TS w
[
n=80 1 helix

ST | BT o ©
n=20 )
TUTTOUD | TI0Y o o
4 helices
FOOR000000 0 0 0
OONTTo000 © 0 0| ©
n=19
I 0O 0O ©
2 helices
"OU000 0 0 OO0
TO000 ., © 0 0 0| .,
0600 ONNORNONRO;
Y BOBO0 CINONNONROC,
16 helices

Figure 7-48 Single monofilar axial-mode helix with 80 turns (@) compared with an array of
four 20-turn helices (b), un array of nine 9-turn helices {¢) and sixteen 5-turn helices (d) for
worked example. All have 24 dB gain. Note also that the product of the number of helices and
nuraber of turns for each array eguals 80 { £ 1), See Sec. 4-8.

A more compact configuration results if four 20-turn helices are used in a
broadside array. Assuming uniform aperture distribution, the effective aperture of
each helix is

Dt 6dif
A, =—="—=50:?
*  dm 4z 304 )
Assuming a square aperture, the side length is 2.24i (=./5.0). With each helix
placed at the center of its aperture area, the spacing between helices is 2.244 (Fig.
7-48h).

A third configuration results il nine 9-turn helices are used in a broadside

array (Fig. 7-48¢).
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Figure T-4% BResistive (R}  and
reaclive (X} components of the
mutual impedance of a pair of
same-handed  B-turn  monofilar
axial-mode helical antennas of 12°
pitch angle as a function of the
separation  dislance  (center-to-
center} in wavelengths, Helix cir-
cumference €, = 1. Conductor
diameter is ©.0164. Seif-impedance
Z,, =140+ 0. (After E A
Blasi, “ Theory and Application of
the Rodiation Mutual Coupling
0 Factor,” M.JS. thesis, Electrical

Q4 05 06 0.7 08 09 1.0 Engineering Department, Ohio Stare

Separation, A Lrniversity, 1952

A fourth possible configuration results if sixteen 5-turn helices are used in a
broadside array with a spacing of 1.12.4 between helices (Fig. 7-48d).

Which of the above cenfigurations should be used? The decision wilt depend
on considerations of support structure and feed connections. The single helix has a
single feed point and a small ground plane but is very long. The other configu-
rations have larger ground planes but are more compact. The 4- and 16-helix con-
figurations have the advantage that the helices can be fed by a symmetrical
corporate structure. Also the (6-helix configuration can be operated as a phased
array. <

With the multiple-helix arrays the mutual impedance of adjacent helices is a
consideration. Figure 7-49 shows the resistive and reactive components of the
mutual impedance of a pair of same-handed 8-turn monofilar axial-mode hetical
antennas as a function of the separation distance in wavelengths (C, = 1, 2 = 12°)
as measured by Blasi.! At spacings of a wavelength or more, as is typical in helix
arrays, the mutual impedance is only a few percent or less of the helix self-
impedance (140 Q resistive). Thus, in designing the feed connections for a helix
array the effect of mutual impedance can often be neglected without significant
consequences. As examples, let us consider the feed systems for two helix arrays,
one with 4 helices and the other with 96 helices.

7-12a Array of 4 Monofilar Axial-Mode Helical Antennas. This array,
shown in Fig, 7-50a, which I constructed in 1947, has four 6-turn, 14° pitch angle
helices mounted with 1.54 spacing on a 2.5 x 2.54 square ground plane.? The
helices are fed axially through an insulated fitting in the ground plane. Each feed

1 E. A. Blasi, “ Theory and Application of the Radiation Mutua) Coupling Factor,” M.S. thesis, Elec-
trical Enginesring Department, Ohio State University, 1952.

23 D. Kraus, “Helical Beam Antennas for Wide-Band Applications,” Proc. IRE, 36, 1236-1242,
Qctober 1948
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point is connected on the back side of the ground plane to a junction point at the
center of the ground plane. Each conductor acts as a single-wire versus ground-
plane transmission line with a spacing between wire and ground plane which
tapers gradually so that the approximately 140 €2 at each helix is transformed to
200 2 at the junction. The four 200-Q lines in paralle} yield 50 £ at the junction
which is fed through an insulated connector to a 50-Q coaxial fitting on the front
{helix) side of the ground plane. Since the taper sections are about 14 long, the
arrangement provides a low VSWR on the 50-Q line connected ta the junction
over a wide bandwidth. Beam width, axial ratio and VSWR performance of the
array are presented in Fig. 7-50b. The array gain at the center frequency
(800 MHz} is about 18.5 dB and at 1000 MHz about 21.5 dB.

7-12b  Array of 96 Monofilar Axial-Mode Helical Antennas. This array,
shown in Fig 7-4, which I designed and constructed in 1951, has 96 t1-turn
12.5° pitch angle helices mounted on a tiftable flat ground plane 404 long by 54
wide for operation at a center frequency of 250 MHz. Each helix is fed by a
150-Q coaxial cable. Equal-length cables from each helix of one bay or group of
12 helices are connected in parallel to one end of-a 2i long tapered transition
section which transforms the 12.5-02 (=150/12) resistive impedance to 30 £.
Equal-length 50-0 coaxial cables then connect the transition section of each bay
to a central location resuiting in a uniform in-phase aperture distribution with
low VSWR over a wide bandwidth. The array produces a gain of about 35 dB at
the center Srequency of 250 MHz (4 = 1.2 m) and increased gain at higher fre-
quencies, At 250 MHz the beam is fan shaped with half-power beam widths of |
by 8.

7-13 THE MONOFILAR AXIAL-MODE HELIX AS A PARA-
SITIC ELEMENT (see Fig. 7-51)

Helix-helix (Fig. 7-51qa). If the conductor of a 6-turn monofilar axial-mode
helical antenna is cut at the end of the second turn, the antenna continues to
operate with the first 2 turns launching the wave and the remaining 4 turns
acting as a parasitic director.

Polyrod-helix (Fig. 7-51b). By slipping a parasitic helix of several turns over a
linearly polarized polyrod antenna, it becomes a circularly polarized antenna.

Horn-helix (Fig. 7-5ic). By placing a parasitic helix of several turns in the
throat of a linearly polarized pyramidal horn antenna without touching the horn
walls, the horn radiation becomes circularly polarized.

'} D. Kraus, * The Ohic State Radio Telescope,” Sky and Tel. 12, 157-159, Apri! 1953
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il :'fjg% m Helix helix
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P Horn helix
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(¢l } - Comer reflector
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orner
reflectar
2 wire-line-

e  helix, LP

Driven helix
m Helix-helix

'k A3 More gain
j ‘Directm helix
TR T Helix lens
(&) . _,:Fa:m Facus Figure 7-31 The monofitar axial-

maode helical antenna in 7 applica-
tions as 4 parasitic elemént.

._m Ray paths

Corner-helix (Fig. 7-51d). A parasitic helix in front of a corner-reflector
antenna results in a circularly polarized antenna,

The 2-wire-line-helix (Fig. 7-51¢). If a parasitic helix of many turas is slipped
over 4 2-wire transmission line without touching it {helix diameter slightly greater
than line spacing), it is reported that the combination becomes a lincarly po-
tarized end-fire antenna with E paraliei to the plane of the 2-wirc line.!

' G. Broussaud and E. Spilz, " Endfire Antennas,” Proc. FRE, 49, 515-516, February 1961,
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Helix-helix (Fig. 7-51f). i a parasitic helix is wound between the turns of a
driven monofilar axial-mode helical antenna without touching it (diameters the
same), Nakano et al. report that the combination gives an increased gain of
about 1 dB without an increase in the axiat length of the antenna. The increased
gain occurs for helices of any number of turns between 8 and 20. The parasitic
helix may be regarded as a director for the driven helix.!

Helix lens (Fig. 7-51g). A monofitar axial-mode helical antenna (or, for that
matter, any end-fire antenna) acts as a lens. An array of parasitic helices of
appropriate length arranged in a broadside configuration can operate as a large
aperture-lens antenna (see Fig. 14-22).

7-14 THE MONOFILAR AXIAL-MODE HELICAL ANTENNA
AS A PHASE AND FREQUENCY SHIFTER. The monofilar axial-
mode helical antenna is a simple, beautiful device for changing phase or fre-
quency. Thus, if the monofilar axial-mode helical antenna in Fig 7-52 is
transmitting at a frequency F, rotating the helix on its axis by 90° will advance
the phase of the radiated wave by 90° (or retard it, depending on the direction of
rotation). Rotating the helix continaously [ times per second results in radiation
at a frequency F + f depending on the direction of rotation (see also Sec. 18-10).

Trans-
mitter

Figme 7-52 The monofilar axial-
mode helical antenna as a phase-
shifting device.

_As an application, consider the 3-helix lobe-sweeping antenna of Fig. 7-53.
All helices are of the same hand. By rotating helix 1 clockwise and helix 3
counterclockwise with helix 2 at the center stationary, a continuously swept lobe
is obtained as suggested in the figure. In operation a small lobe appears about
30° to the left, then grows in amplitude while sweeping to the right, reaching a
maximum at 0° {at right angles to the array). Sweeping further to the right, the
lobe decreases to a small amplitude at an angle of about 30° and simultaneously
a small lobe appears at 30° to the left and the process is repeated, giving a contin-
uously sweeping lobe (left to right) which crosses the 0° direction n times per

! H. Nakano, T. Yamane, J. Yamauchi and Y. Samada, “Helical Antenna with Increased Power
Gain," JEEE AP-S Int. Symp., |, 417420, 1954

H. Nakano, Y. Samada and J. Yamauchi, “Axial Mode Helical Antennas,” IEEE Trans. Anis. Prop.,
AP-M, 1143-1148, September 1986.
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20" 30

\ /

Swept lobe

Stationary

Figure 7-53 Array of 3 right-handed monefilar axial-
I [ mode helical antennas with outer 2 rotaling in opposite
directions Lo produce a continuously sweeping labe.

minute for a helix rotation speed of n revolutions per minute, By using more
helices, the beam width of the swept lobe can be made arbitrarily smait.

1 designed, built and operated one of these 3 helix arrays in 1957 for obsery-
ing radio emissions from the planet Jupiter at frequencies of 25 to 35 MHz.!
Each helix had 3 turns and was 3 m in diameter.

Another application of phase-shifting with a hetix is discussed in the next
section in connection with helices for lincar polarization.

7-15 LINEAR POLARIZATION WITH MONOFILAR AXIAL-
MODE HELICAL ANTENNAS. If two monofilar axial-mode helical
antennas are mounted side by side and fed equal power, the radiation on axis will
be linearly polarized provided the helices are of opposite hand but otherwise
identical (Fig. 7-54a). With switch 1 right, switch 2 left and switch 3 up, polariz-
ation is lincar. Rotating one of the helices on its axis 90° rotates the plane of
linear polarization by 45°. Rotating one helix through 180° rotates the plane of
linear polarization 90°. With switches 1 and 3 left, as in the figure, the polariz-
ation is LCP (left-handed circular polarization). With switches 2 and 3 right,
the polarization is RCP {right-handed circular polarization). Thus, the two
helices can provide either left or right circular polarization or any plane of linear
polarization.

'3. D. Kraus, ~ Planelary and Solar Radio Emission a1 11 Meters Wavelength,” Proc. IRE, 48, 266—
274, January 1958,
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(el

Figure 7.54 (g) Arrangement for producing left circular polarization (LCP), right circular polariz-

ation (REP} or any plane of iincar polarization {LP). {¥) Two helices of opposite hand in series for
producing linear polarization (LPY

_ Another method of obtaining linear polarization is to connect a left- and a
right-handed helix in series as in Fig, 7-54b.

A third method has already been discussed in Sec. 7-13 (2-wire-line-helix).

Fjlliptical.polarization approaching linear polarization ¢an be obtained by
flattening a helix so that its cross section is elliptical instead of circular.

7-16 MONOFILAR AXIAL-MODE HELICAL ANTENNAS AS
FEEDS. Figure 7-55 shows a driven helix feeding an array of crossed dipoles
acting as directors for producing circular polarization. Although this arrange-
ment has less gain and bandwidth than a full helix of the same length the crossed
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1» Figure 7-55 Muonofilar axial-mode heheal
Drvven Crossed antenna as fzed for an end-fre array of crossed
helix dirgctors diprles.

dipoles may be simpler to support than a fong helix. The feed connections for the
helix are alse simpler than for a pair of crossed Yag-Uda antennas. which
require equal power with voltages in phase quadrature.

Helices are useful as feed elements for parabolic dish antennas. An example
constructed by Johnson and Cotton' is shown in Fig. 7-56 in which a 3.5-turn
monofilar axial-mode helix operates in the back-fire mode as a high-power
unpressurized (200 kW) circularly polarized feed element for a parabolic dish
reflector. Without a ground plane the helix naturally radiates in the backward
axial direction. Apother example of a back-fire helix feed is shown in Fig. 7-6.% A
meonofitar back-fire helical antenna was also constructed by Patton® for compari-
son with bifilar back-fire hebcal antennas.

Short monofilar axial-mode end-fire helices of a few turns with cupped
ground plane are also useful as feeds for parabolic dish refleciors for preducing
sharp beams of circularly polurized radiation. Short conical helices (x constant, D
and § increasing) are also useful because of their broad patterns for short focal-
length dishes (see the helix in Fig. 7-3%a).

For dish feeds covering a frequency range greater than provided by a single
helix, Iwo or more helices can be mounted coaxially inside each other with phase
centers coincident as shown in Fig. 7-37. This combination is superior to & log-
periodic untenna as the feed since the phase center of a log-periodic antenna
moves with frequency, resulting in defocusing of the parabolic reflector system.

Hotland* has built a feed of this type with a larger helix for the L band and
a smaller helix for the S band. The number of turns required for the helix feed
antennas depends on the beam width desired. For the pattern to be 10 dB down
at the edge of the parabolic dish reflector, the required number of turns is
approximately given by

8400

1
75, (n

H~

'R, €. Johnson and R. B. Couon. A Backfire Helical Feed,” Georgia Institute of Technology,
Engineening Experimental Station Report, 1982,

* . E. King and 1. L. Wong, “Antenna System for the FleetSatCom Satellites,” IEEE International
Symposium on Antennas and Propagation, pp. 349-352, 1977,

3 W. T. Patton, * The Backfire Bifilar Helical Antenna,” Ph.I). thesis, Umversity of Tllinois, 1963,

“ J. Holland, “Multiple Feed Antenna Covers I.. S and C-Band Segments,” Microwave J., 82-83,
October 1951,
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Figure 7-56 Short back-fire monofilar axial-mode helix as high-power (200 kW) circularly polarized
feed for a parabolic dish antenna. (After R. C. Johnson and R. B. Cotton, ** A Backfire Helical Feed,”
Georgia Institute of Technology, Engineering Experimental Station Report, 1952

where ¢¢ = 10 dB beam width
§, = turn spacing in wavelengths

Thus, if §; = 0.2] (x = 12°} and the required value of ¢ = 115° we have from (1)
that¥ = 3. :

To reduce mutual coupling of the helices, Holland placed the peripheral
feed points of the two helices on opposite sides of the axis, as suggested in Fig.
7-57, obtaining 2-port fixed-phase-center operation over a 5 to 1 bandwidth,

7-17 TAPERED AND OTHER FORMS OF AXIAL-MODE
HELICAL ANTENNAS. In this section a number of variants of the uniform
{constant diameter, constant pitch) monofilar axial-mode helical antenna are dis-
cussed. Some of these forms are shown in Figs. 7-58, 7-59 and 7-60 which are
reproduced here without changes from the first edition of Antennas (1950). In

L-band helix

Figure 7.87 Coaxially-mounted  peripherally-feé  monofilar
axiaj-mode helical antennas of same hand as parabolic dish feeds
with same staticnary phase centers for covering a 5 10 1 fre-
quency range. (After J. Holland, '"Multiple Feed Antenna Covers
S-band helix L. S and C-Band Segments,” Microwave J., 82-85, October I981)
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Figure 7-58  Axial-mode helices showing various constructional and feed arrangements. (After
Kraus.)

Fig. 7-58 we recognize in (a) a uniform helix with ground plane and in {c} a
uniform helix without ground plane (the same configuration as in Fig. 7-56 for a
back-fire feed). The double winding in (i) is similar to the one of Nakano et al.
{Fig. 7-51f) except that both windings in (i) are driven while in Nakano et ol.”
ong is parasitic.

Figure 7-59 shows 9 forms of tapered monofilar axial-mode helical
antennas grouped into 3 classes: (1) pitch angle » constant but turn spacing S and
diameter D variable, (2) diameter D constant but pitch angle x and turn spacing §

Increasing Cecreasing Envelope

constant Z‘—J"Tﬂ @) E’l/m ) ;lm ()

o ST T ATTW @ ST

Qonstant =11m @ %m @ %fmh @

Figure 7-59 Types of tapered monofilar axial-mode helicat antennas. | After Kraus.)
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Figure 7-60 Types of tapered monofilar axial-mode helical antennas indudiﬁg ones in which con-
ductor size is tapered. {After Kraus.}

variable and (3) turn spacing § constant but pitch angle « and diameter D vari-
able. Many of these forms have been investigated—the class (2} form by Day.!

Day measured patterns of monofilar axial-mode helical antennas of 6 turns
with the diameter constant but « increasing or decreasing (D constant but « and
§ variabie as in Fig, 7-594, e and f or the middie row of Fig. 7-59), The helix
conductor diameter was 0,024, Pitch angles were varied on a given helix from 1
to 20°, Wto 17° or 9 to 15°, both increasing and decreasing. These were compared
with a constant pitch angle of 12.5° at helix circumferences C, of 0.6, 0.8, 1.0, 1.2
and 1.4—a total of 35 cases. For pitch angle tapers between 5 and 17° and 0.8 <
C; =< 1.2, the pattern variations are minor. However, at C, = 1.2 and with the
pitch angle decreasing from 17° at the feed end to 5° at the open end, the gain is
t dB more than for C; = 1.2 and « = 12.5" (constant pitch). This is a significant
improvement since the highest gain for a uniform 6-turn helix occurs when « is
approximately 12.5° and the circumference C, approximately 1.2. Thus, the
center helix (D constant, x and § decreasing), of the 9 shown in Fig. 7-59 (i.e., Fig.
7-5%¢), is a useful variant of the uniform helix.

The conical helix in Fig. 7-59a for which « is constant and D (or C) and §
are’increasing has been investigated by Chatterjee,” Nakano, Mikawa and
Yamauchi® and others. With small pitch angles Chatterjee found that very broad

' P. C. Day, “Some Characteristics of Tapered Helical Beam Antennas,” M.S. thesis, Ohio State
University, 1950,

?J. 8. Chattetjee, " Radiation Field of a Conical Helix,” J. 4ppl. Phys.,, 24, 550~559, May 1953; 26,
331-335, March 1955

3 H. Nakano, T. Mikawa and J. Yamauchi, * Numerica! Analysis of Monofilar Conical Helix,” fEEE
AP-S Ini. Symp., 1, | 77180, (984.
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patterns can be obtained over a 5 to 1 bandwidth. According to Nakano,
Mikama and Yamauchi, the currents involved are those of the attenuating wave-
launching region close to the feed point (see Fig. 7-3b and ¢).

Additional tapered types are shown in Fig. 7-60. The one at (a) has a
tapered and uniform section but reversed in order from the uniform-to-taper type
of Wong and King' and others. The other designs shown in Fig. 7-60 involve
variation in the diameter of the helical conductor d or the width w of a flat strip
conductor, Thus, there are 4 quantities which can be varied, &, D, § and d (or w).
Since the characteristics of the monofilar axial-mode helical antenna are rela-
tively insensitive to moderate changes in dimensions, the effect of moderate
departures from uniformity is, in general, not large. However, some changes may
produce significant increases in gain, as discussed above, and significant decreases
in axial ratio and VSWR (see Fig. 7-24). See also Sec. 15-4.

7-i8 MULTIFILAR AXIAL-MODE (KILGUS COIL AND
PATTON COIL) HELICAL ANTENNAS. Four wires, each 1/2 long
and forming 4-turn of a helix as in Fig. 7-61, produce a cardiod-shaped back-fire
circularly polarized pattern (HPBW o 120°) when the two pairs are fed in phase
quadrature. This Kilgus coil may be described as two 4-turn bifilar helices or one
4-turn quadrifilar helix.” The antenna is resonant and the bandwidth is narrow
(about 4 percent). The 4 wires can also be 4/4 or 1 long. ror these lengths the
jower ends are open-circuited instead of short-circuited as for the 1/2 wires of
Fig. 7-61. Each bifilar helix can be balun-fed at the top from & coaxial line
extending to the top along the central axis. By increasing the number of turns
Kilgus reports that shaped-conical patterns can be obtained which may be more
useful for some applications than a cardiod (heart-shaped) pattern.?

A bifilar helix end-fed by a balanced 2-wire transmission line produces a
back-fire beam when operated above the cutoff frequency of the principal mode
of the helical waveguide. The maximum directivity of this Patton coil occurs
slightly above the cutoff frequency.* The pattern broadens with increasing fre-
quency and at pitch angles of about 45° the back-fire beam splits and scans
toward side-fire,

Below the cutoff frequency, there is a standing-wave current distribution
along the helical conductor. Above cutoff, the standing wave gives way to a grad-
ually decaying traveling wave, With a further increase in frequency the rate of
decay increases and a low-level standing wave appears, indicating the existence of

'J. L. Wong and H, E. King, “Broadband Quasi-Taper Helical Antennas,” IEEE Trans. Ants. Prop.,
AP-27, T2-78, January 1979.

2 . C. Kilgus, “ Resonant Quadsifilar Helix,” JEEE Trans. Ants. Prop., AP-17, 349-351, May 1969.

3 €. C. Kilgus, “ $haped-Conical Radistion Pattern Performance of the Backfire Quedrifilar Helix,"
{EEE Trans. Ants. Prop., AP-13, 392-397, May 1975,

* W. T. Patton, * The Backfire Helical Antenna,” Ph.D. thesis, University of lliinois, 1963.
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T Pattarn
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Figure 7-61 Resonant narrowband back-fire quadnfilar
Kilgus coil for very broad circularly polarized pattern.
{After C. C, Kilgus, “ Resonant Quadrifilar Helix,” \EEE
Trans. Ants. Prop., AP-17, 349-35/, May 1965.) Wires are
situated in space as though wrapped around a cylinder as
"1 suggested in the figure. .

X
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a higher-order helical waveguide mode. This establishes the upper frequency limit
of the bifilar helix back-fire radiation,

Quadrifilar and octofilar axial-mode forward end-fire circularly polarized
helical antannas using large pitch angles (30 to 60°} have been investigated by
Gerst and Worden! and Adams et al.?

7-19 MONOFILAR AND MULTIFILAR NORMAL-MODE
HELICAL ANTENNAS. THE WHEELER COIL. The previous sec-
tions deal with axial-mode helical antennas with maximum radiation in the direc-
tion of the helix axis. The radiation may be (forward) end-fire or back-fire. In this
section the normal mode of radiation is discussed, normal being used in the sense
of perpendicular to or at right angles to the helix axis. This radiation with its
maximum normial to the helix axis may also be described as side-fire or broadside.

When the helix circumference is approximately a wavelength the axial mode
of radiation is dominant, but when the circumference is much smaliler the normal
mode is dominant. Figure 7-62a and ¢ shows helices radiating in both modes
while Fig. 7-62b shows a 4-lobed mode helix (Chireix coil) with the relative sizes
for producing the modes being indicated.

' C. W. Gerst and R. A. Worden, " Helix Antennas Take a Turn for the Better,” Efectronics, 100-110,
Aug 22,1966

*A. A, Adams, R. K. Gresnough, R. F. Wallenberg, A. Mendelovicz and C. Lumjiak, “ The Quadri-
filar Helix Antenna, JEEE Trans, Ants, Prop., AP-22, 173-178, March 1974,
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Figure 7-62 Field patterns of axial, 4-lobed and normal radiation modes of helical antennas with
relative size indicated.

Now let us examine the requirements for normal-mode radiation in more
detail. Consider a helix oriented with axis coincident with the polar or z axis as in
Fig. 7-63a. If the dimensions are small (nL. < 2), the maximum radiation is in the
xy plane for a helix oriented as in Fig. 7-63a, with zero ficld in the z direction.

When the pitch angle is zero, the helix becomes a loop as in Fig, 7-63b,
When the pitch angle is 90°, the helix straightens out into a linear antenna as in
Fig. 7-63¢, the loop and straight antenna being limiting cases of the helix.

(e} Helix X (&) Loop x {¢) Dipole

Figure 7-63 Dimensions for helix, loop and dipole.
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N
2,
iz
5
1] Figore 7-64 Modified helix [or normal-mode calculations,

The far field of the helix may be described by two components of the elec-
tric field, £, and E,, as shown in Fig. 7-63a. Let us now develop expressions for
the far-field patterns of these components for a smalt short helix. The develop-
ment is facilitated by assuming that the helix consists of a number of small loops
and short dipoles connected in series as in Fig, 7-64a. The diameter D of the
loops is the same-as the helix diameter, and the length of the dipoles § is the same
as the spacing between turns of the helix. Provided-that the helix is small, the
modified form of Fig. 7-64a is equivalent to the true helix of Fig. 7-63a. The
current is assumed to be uniform in magnitude and in phase over the entire
length of the helix. Since the helix is small, the far-field pattern is independent of
the number of turns. Hence, it suffices to calculate the far-field patterns of a single
small loop and one short dipole as illustrated in Fig. 7-64b.

The far field of the small loop has enly an E, component. Its value is given
in Table -1 as

120r?[I]sin & A
E,= #.. — )
r A
where the area of the loop A = aD?/4

The far ficld of the short dipele has only an E; compoenent. Its value is given in
the same table as
60r[I]) sin @ §
: £ = 2003 @
: r p)
where § has been substituted for L as the length of the dipole.
Comparing (1) and {2), the j operator in (2) and its absence in {1) indicates
that E, and E, are in phase quadrature. The ratio of the magnitudes of (1} and (2)
then gives the axial ratio of the polarization ellipse of the far field. Hence, divid-
ing the magnitude of {2) by (1) we obtain for the axial ratio:

|E,| Si  28i 25,

AR = g, | "2ua 7D~ CF 3

Three special cases of the polarization ellipse are of interest. (1) When E, =
0, the axial ratio is infinite and the polarizaticn eliipse is a vertical line indicating



336 7 THE HELICAL ANTENNA

Figld pattern

D, =
r"0.045
C,=0.14
w=4° Figure 7-65 Resonant narrowband circularly pol-
S -wire feed .= 0.01A arized monofilar normal-mode Wheeler coil. Paltern

is that of a short dipole.

linear vertical polarization. The helix in this case is a vertical dipole. (2) When
Eq = 0, the axial ratio is zero' and the polarization ellipse is a horizontal line
tndicating linear horizontal polarization. The helix in this case is a horizontal
loop. (3) The third special case of interest occurs when | E,| = | E4l. For this case
the axial ratio is unity and the polarization ellipse is a circle, indicating circular
polarization. Thus, setting (3) equal to unity vields o

nD = /251  or =25, 4)

This relation was first obtained by Wheeler in an equivalent form.? The radiation
is circularly polarized in all directions in space but with zero field on axis
(z direction, Fig. 7-63a). A monofilar normai-mode helix or Wkeeler coil fulfilling
condition (4) is shown in Fig. 7-65. 1t is a resonant, narrowband antenna,

We have considered three special cases of the polarization ellipse involving
linear and circular polarization. In the general case, the radiation is elliptically
polarized. Therefore, the radiation from a helix of constant turn-length changes
progressively through the foliowing forms as the pitch angle is varied. When
x = 0..we have a loop (Fig. 7-63b) and the polarization is linear and horizontat.
As x increases, let us consider the helix dimensions as we move along a constant
L, line (circle with center at origin, Fig. 7-10). As x increases frem zero, the
polarization becomes elliptical with the major axis of the polarization ellipse
horizontal. When # reaches a value such that ¢ = 25, the polarization is cir-
cular. With the aid of Fig. 7-9, this value of « is given by

—1+ b+ L2
1.

A

a = aresin (5)
As = increases still further, the polarization again becomes clliptical but with the
major axis of the polarization ellipse vertical. Finally, when x reaches 90°, we
have a dipole (Fig, 7-63¢) and the polarization is lincar and vertical. Wheeler's

! The axial ratio is here allowed to range from 0 lo x ., 1nslead of lrom | to = as customarily, in
order to distinguish between linear vertical and linear horizontal polanzation.

* H. A. Wheeler. "A Helical Antenna for Circular Polarization,” Proc. TRE, 3%, 1484—1488, Decemnber
1547,
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D, =0.013
b

| S$,=0.01

ho=0.08 C=0.04
a=14"
n==0
Tap = .
/E[;?_:;nd Figure 7-66 Short resonant narrowband monofilar normal-
. mode helical antenna mounted over 4 ground plane as substitute
Hi-+Coaxial fine for a #/4 stub.

relation for circular polarization from a helix radiating in the normal mode as
given by (4j or (5} is shown in Fig. 7-t0 by the curve marked C,= \/2_&

In the preceding discussion on the normal mode of radiation, the assump-
tion is made that the current is uniform in magnitude and in phase over the
entire length of the helix. This condition could be approximated if the helix is
very small (nL < ) and is end-loaded. However, the bandwidth of such a small
helix is very narrow, and the radiation efficiency is low. The bandwidth and
radiation efficiency could be increased by increasing the size of the helix, but to
approximate the uniform, in-phase current distribution requires that some type of
phase shifter be placed at intervals along the helix. This may be inconvenient or
impracticad. Hence, the production of the normal mode of radiation from a helix
has practical limitations, — -

An antenna having four slanting dipoles that is suggestive of a fractional-
turn quadrifilar helix radiating in the normal mode had been buitlt by Brown and
Woodward' (see Fig. 16-20f). Their arrangement is based on a design described
by Lindenblad.?

Resonant monofilar normal-mode helical antennas are useful as short,
essentially vertically polarized, radiators. Referring to Fig. 7-66, the helix
mounted on a ground plane with axis vertical acts as a resonant narrowband
substitute for-a //4 vertical stub or monopole above a ground plane. The helix in
Fig. 7-66 is 0.06/ in height or about 4-height of a i/4 stub. From (3) the axial
ratio of the helix is given by

AR="2=-2 2 o (6}

' G. H. Brown and 0. M. Weodward, * Circularly Polarized Omnidirectional Antenna,” RCA Rev. 8,
259-269, June 1947,

2 N.E. Lindenblad, “Antennas and Transmission Lines a( the Empire State Television Station,” Com-
nunications, 21, 10~14, 24-26, Aprii 1941.
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with the major axis of the polarization ellipse vertical. The polarization is, thus,
essentially linear and vertical with an omnidirectional pattern in the horizontal
plane (plane of ground plane). The radiation resistance is neatly the same as for a
short monopole of keight b, above the ground plane where #; = nS;, which from
(2-20-3) or (5-3-14) (for a short dipole) is given by

2
R=yxma(E)H @ (?)
i)

Assuming a sinusoidal current distribution (maximum, current at ground plane,
zero at open end),

2
R, =395 x (2) x 0.062 =0.6 O (8)
n

This is the radiation resistance between the base of the helix and ground. Con-
nection to a coaxial line would require an impedance transformer, but with the
shunt feed of Fig. 7-66 the helix can be matched directly to a coaxial line by
adjusting the tap point on the helix. With such a small radiation resistance, any
loss resistance can reduce efficiency (see Secs. 2-15 and 6-12). The advantage of
the helix over a straight stub or monopole is that its inductance can resonate the
antenna.

A center-fed monofilar helix (x = 30°) with S, =, L, =2and C, = ﬁ has
a 4-lobed pattern, 1 lobe each way on axis and 2 lobes normal to the axis. Its
location is indicated on the m = 1 line of Fig. 7-10 where the L, = 2 and « = 30°
lines intersect, for which also C; = 1.73 and §, = 1 (Chireix coil; se¢ also Fig.
7-62h).

)Patton‘ has demonstrated that a bifilar helix end-fed by a balanced 2-wire
transmission line can produce circularly polarized omnidirectional side-fire radi-
ation when pitch angies of about 45 are used. _

Some other monofilar and multifilar normal mode (side-fire) helices for
omnidirectional FM and TV broadcasting are described by King and Wong and
by DuHamel.?

PROBLEMS?

*7-1 An S-turn helix. A monofilar helical antenna has o« = 12 n = 8, D = 225 mm. (a)
What is p at 400 MHz for [1) in-phase fields and {2} increased directivity? (b) Calcu-
iate and piot the field patterns for p = 1.0, 0.9 and 0.5 and also for p equal io the
value for in-phase fields and increased directivity. Assume each turn is an isotropic
point source. (c) Repeat (b) assuming each turn has'a cosine pattern.

' W_T. Patton, “ The Backiire Helical Antenna.” Ph.D. thesis, University of Ilinois, 1963

2 H. E. King and J. L. Wong, pp. 13-18, and R. H. DuHamel, pp. 28-35, in R. C. Johnson and H.
Jasik (eds.), Radic Engineering Handbook, McGraw-Hill, 1984,

* Answers o starred (*) problems are given in App. D.
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7-2 A 10-turn helix. A right-handed monofilar helical antenna has 10 turns, 100 mm
diameter and 70 mm turn spacing. The frequency is 1 GHz. (a) Calculate and plot
the far-field pattern. (b) What is the HPBW? (¢} What is the gain? {d} What is the
polarization state? (¢) Repeat the problem for a frequency of 300 MHz,

7-3 A 30-turn helix. A right-handed monofilar axial-mode helical antenna has 30 turns,
A/3 diameter and i/5 turn spacing. Find (a) HPBW, (b) gain and (c) polarization
state.

Note regarding Probs. 7-1, 7-2 and 7-3: The patterns for monofitar axial-mode helices may
be calculated using the BASIC program in App. B-2 where in line 10:

N = number of turns
D = spacing = 2rS, : :
§ = phase shift between turns = 218, + {x/N)
MF = multiplying or normalizing facter = 67 sin {z/2N}

and to account for the single-turn pattern, line 80 should read:
R = MF*ABS(R)*CA.

7-4 Helices, left and right. Two monofilar axial-mode helical antennas are mounted
side-by-side with axes parallel (in the x direction). The antennas are identical except
that one is wound left-handed and the other right-handed. What is the polarization
state in the x direction if the two antennas are fed (a) in phase and (b) in opposite
phase?

7-5 A 6-turn helix. A monofilar axial-mode helical antenna has 6 turns, 231 mm diam-
eter and 181 mm tura spacing. Neglect the effect of the ground plane. Assume that
the relative phase velocity p along the helical conductor satisfies the increased-
directivity condition. Calculate and plot the following patterns as a function of ¢ (0
£0,360°) in the & = 90" plane at 400 MHz. Use the square helix approximation. (a}

_ Eyr for a single turn and E, for the entire helix. {b} Repeat (a) negiecting the
contribution of sides 2 and 4 of the square turn. (c) E,, for a single turn and E, for
the entire helix.

76 Normal-mode belix.

{a} What 15 the approximate relation required between the diameter I and height
H of an antenna having the configuration shown ir Fig. P7-6, in order to
obtain a circularly polarized far field at all points at which the field is not zero.
The loop is cirgular and is horizontal, and the lingar conductor of length H is
vertical. Assume D and H are small compared to the wavelength, and assume
the current is of uniform magnitude and in phase over the system.

(b) What is the pattern of the far circularly polarized field ?

Figure P7-6 Normal-mode helix.



CHAPTER

THE
BICONICAL
ANTENNA
AND ITS
IMPEDANCE

8-1 INTRODUCTION. Sir Oliver Lodge constructed a biconical antenna in
1897, while the single cone working against ground was popularized by Marconi
(Fig. 1-3). The fan (Rat triangular) antenna was also used by Marconi and others.
The broadband characteristics of monoconical (single-cone) and biconical
{double-cone) antennas make them useful for many applications. In this chapter a
fundamental analysis is given and both theoretical and experimental results are
presented.

In the chapters preceding 7 it is usually assumed that the antenna conduc-
tor is thin, in fact, infinitesimally thin. From known or assumed curreni distribu-
tions, the far-field patterns are calculated. The effect of the conductor thickness
on the pattern is negligible provided that the diameter of the conductor is a smatl
fraction of a wavelength. Thus, the patterns calculated on the basis of an infini-
tesimally thin conductor are applicable to conductors of moderate thickness, say
for ¢ « 0.05} where d is the conductor diameter.

The radiation resistance of thin linear conductors and loops is calculated in
Chaps. 5 and 6. This calculation is based on a knowledge of the pattern and a
known or assumed current distribution. The values so obtained apply strictly to
an infinitesimally thin conductor. The conductor thickness, up to moderate diam-
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Figure 81 An infinite biconical antenna i} is analogous to an infinite niform transmission line {&).

eters, has only a small effect on the resistance at or near a current loop but may
have a large effect on the resistance at or near a current minimum.!

_In this chapter, we consider the problem of finding the inpu! terminal resist-
ance ang alsc the reactance, taking into account the effect of conductor thickness.
This problem is most simpl