UPTEC F11037

Examensarbete 30 hp
Maj 2011

Angstrom Small Radio Telescope

Henrik Lindén

UPPSALA
UNIVERSITET

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besoksadress:
Angstrémlaboratoriet
Lagerhyddsvagen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 — 471 3003

Telefax:
018 — 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Angstrém Small Radio Telescope

Henrik Lindén

For the Swedish Institute of Space Physics and Uppsala University, we have developed
a working radio astronomy telescope capable of receiving the 21 cm hydrogen line;
the Angstrom Small Radio Telescope. The work have resulted in a functional system
for positioning the dish, with built in tracking of deep space objects and scanning
functions, and signal reception with filtering, mixing and digital sampling. The system is
controlled via a computer through an Internet connection.

Handledare: Jan Bergman
Amnesgranskare: Nikolai Piskunov
Examinator: Tomas Nyberg

ISSN: 1401-5757, UPTEC F11037

Sammanfattning

For Institutet for Rymdfysik och Uppsala Universitet, har vi tagit fram att fungerande radio
teleskop med kapacitet att ta emot den s& kallade viitelinjen, kallat Angstrom Small Radio Tele-
scope (ASRT). Resultatet blev ett fungerande system for positionering, med funktioner for att
folja sa kallade deep-space-objekt och for att kunna gora avldsningar av hela himmeln, samt mot-
tagning av signalen med filtrering, mixning och digital sampling. Malet har varit att systemet ska
anvindas som laborationsutrustning av studenter i kurser om astronomi, for att de pa en enkel
niva ska lara sig hur mycket av dagens forskning kring rymden som ej &r direkt visuell fungerar.
Eftersom systemet bygger pa exakt samma principer som de stora professionella teleskopen som
kan vara flera hundra meter i diameter, kommer eleverna att d&ven kunna fa en god forstaelse for
hur den rent tekniska delen av teleskopet a&r uppbyggd. Mottagarsystemet gor teleskopet dven
intressant for studenter med fokus pa mikrovagsteknik och elektronik.

Vitelinjen i sig &r intressant da véte dr det mest fundamentala grunddmnet i universum, i
och med det s& kan man bl.a. analysera spridningen av véte, och pa sa vis fa mycket intressant
information om universums utveckling. Det finns d&ven anvindning for teleskopet i lite mera pro-
fessionell forskning exempelvis for detektion av pulsarer. For systemet finns ocksa férhoppningar
om utbyggnad till ett interferometerteleskop eftersom ytterligare en parabol finns tillgdnglig for
detta dndamal, vilket kan leda till ytterligare intressanta mdjligheter.

Acknowledgments

Supervisor

Dr. Jan Bergman, Swedish Institute of Space Physics

Assistant Supervisor

Prof. Anders Rydberg, Signals and Systems group, Department of Engineering Sciences

Assitant Supervisor

Dr. Roger Karlsson, Department of Physics and Astronomy

Subject Examiner

Prof. Nikolai Piskunov, Department of Physics and Astronomy

Electronics & Motor Control

Sven-Erik Jansson, Swedish Institute of Space Physics
Walter Puccio, Swedish Institute of Space Physics
Lennart Ahlén, Swedish Institute of Space Physics
Farid Shiva, Swedish Institute of Space Physics

Contents

1 Introduction

1.1 The Parabolic Dishes
2 Radio Astronomy
2.1 History e
2.2 The Hydrogen line e
2.2.1 Why use the hydrogen line?
2.3 Possible Experimentso
2.3.1 Hydrogen Distribution Lo 0oL
2.3.2 Imterferometry
2.3.3 Pulsars

3 Control System

3.1 Introduction L e e
3.2 The Controller-box e e
3.3 Programming Language L Lo
3.4 GUILibrary oo o e
341 Qb .o
3.5 Commands e e
3.6 Functionality
3.6.1 Scanning
3.6.2 Tracking L
3.7 User Information
3.71 Dish Mode e
3.7.2 Fix Position
3.7.3 Hemispherical Scan
3.7.4 Other Functions
4 Radio System
4.1 Components
4.1.1 Amplifiers
4.1.2 Filters
4.1.3 MIXers
4.1.4 Oscillators e e e
4.1.5 Signalcables
4.1.6 Powersupply
4.1.7 Receiver Circuit Board o Lo
4.2 Evaluating The System

ot Gt

© 00 00 00 0~

CONTENTS

CONTENTS

5 Results
5.1 The Angstrom Small Radio Telescope
51.1 TheDish
5.1.2 TheMotors
5.1.3 The Controller System
5.1.4 The Receiver System
5.2 The signal from outer space.

6 Conclusions

6.1 Possible Improvements

A List of Components

Al RF Circuits
A.2 Cables & Adapters

B Source Code - PIC microcontroller

B.1 PLL progasm

C Source Code - GUI Controller

C.l main.cpp . . .« o v v v
C.2 dishwindow.h o0,
C.3 dishwindow.cpp
C.4 helpbrowser.h oo oo
C.5 helpbrowser.cpp
C.6 ui_dishwindow.h 000
C.7 ui_helpbrowser.h 00000
C.8 configini.

Bibliography

28

............... 28
............... 28
............... 28
............... 28
............... 31
............... 34

36

............... 36

38

............... 38
............... 39

Chapter 1

Introduction

The Angstrém Small Radio Telescope consists of two 2.3 m diameter parabolic dishes located on
the roofs of house 7 and 8 of the Angstrém laboratory in Uppsala, Sweden. It has been a long going
project which was put on ice a few years ago in favor of other projects, and has since then been left
unattended. The purpose of this work is to make one of the dishes fully functional. Consequently
some parts of the project was already started and could be continued upon. The first part of
this work was therefore to analyze what parts of the project had been worked upon and which
could be used to finish it. It turned out there where actually two separate attempts made to get
the ASRT running: one by scientists at the Institute of Space Physics in Uppsala (IRFU), right
after the acquisition of the parabolic dishes, and another attempt by Professor Anders Rydberg
at the department of Signals and Systems at the University of Uppsala, some time later after the
first attempt was canceled. These projects where performed separately on the different dishes and
therefore had completely different control systems. To separate the different dishes we have given
them names to represent their placement on the roof of the laboratory, and is consequently called
the Angstrém 7 and Angstrém 8 dishes, A7 and A8 for short.

The major obstacle to get a running system was to get the motor control system working and
this had been attempted in both previous efforts. The second attempt by Professor Rydberg was
made using a system made in the U.S. that was originally made to match another system, but was
thought to be able to control the ASRT dishes as well, although with some modifications. The
trail used the A7-dish and was partially successful but a few problems where not solved. At IRFU
the project had halted after a controller-chip box was completed and most elementary command
options, like positioning, reset, and stop had been implemented, using the A8-dish. As Sven-Erik
Jansson, the builder of the controller-chip box, was available during this project and the other
controller system had quite little documentation, improving the existing design on the A7-dish
seemed impractical. It was decided that the IRFU system would be the one to be continued upon.
Also, some modifications that had been made to the A7-dish to adapt it to the U.S. controller
made it more difficult to get started with.

1.1 The Parabolic Dishes

The parabolic dishes were purchased in 2005 from the Onsala Space Observatory [1], which in
turn imported four such telescopes from the MIT Haystack Observatory [2] who manufacture and
distribute these small radio telescopes (SRT). The original design mounted the dish using a single
180 degree motor, implying only elevation could be varied. To improve this the engineers at Onsala
stacked two motors on top of each other tilting the bottom one 90 degrees to have the antenna
move in both azimuth and elevation. On arrival at Uppsala some calibration to these motors was
made and a stable tripod was constructed for each antenna. The technical specifications can be
seen in Table 1.1, and as stated they can also handle frequencies above 1.42 GHz. However the

1.1 The Parabolic Dishes Introduction

Table 1.1: Antenna Specifications/3]

Diameter 2.3 m

Focal Length 85.7 cm

Gain at 4.2 GHz 38.1 dBi

Gain at 1.4 GHz 28.1 dBi

Beam Width 7.0 Degrees at 1.4 GHz
Position A8 N59°50.264" ; E38°38.924/

specifications regarding the gain at 1.42 GHz was not provided and had to be calculated using the
approximative formula [4].

Gain at 1.42 GHz = 17.8 + 20 log(Antenna Diameter) + 20 log(Frequency) (1.1)

The feed horn on the dishes contain two individual dipole antennas mounted with a 90 degree
inclination to one another. The fact that the two are rotated differently enables us to measure the
different polarizations of the signal. This also means that we are provided with two signals which
we need equipment to receive and process.

Figure 1.1: The Antenna (a), with the dipoles (b)

Chapter 2

Radio Astronomy

2.1 History

The field of radio astronomy is a quite young science. Its basis was discovered during an attempt
to minimize noise in telephone lines by Bell employees [5], around 1935. It was found that the
interference varied during the day and the radio source was first believed to be the sun, but more
investigation indicated that it came from another point in space which later was shown to be the
center of our galaxy.

In the early 1950s the first conclusive measurements were made of the always so popular 21 cm
Hydrogen line and radio astronomy was shown to be a field with great promise. Nowadays, radio
astronomy is a vital part in our understanding of the universe, e.g. we have the cosmic mi-
crowave background radiation giving us a glimpse of the structure of the early universe when only
a few hundred thousand years old. The Onsala Space Observatory situated on the coast south
of Gothenburg, is the institution that conduct most of the radio astronomy research in Sweden.
They have two large parabolic dish antennas, 20 m and 25 m in diameter, doing measurements of
molecules and stars, and also international collaborations like VLBI (Very Long Baseline Interfer-
ometry). They also have the SRT:s mentioned earlier called SALSA [6], which is mostly used for
experiments by students. The largest dish-telescope ever made is the Arecibo Radio Telescope in
Puerto Rico, it spans a total 305 m [7] in diameter and is used for all kinds of research, some of the
runtime is even allotted for use in the SETI project [8], Search for Extra-Terrestrial Intelligence.
The Arecibo telescope is built inside a valley, or sinkhole, is fixed to the ground and steers the
antenna beam by moving the receiver horn instead of moving the entire antenna.

Other notable telescopes are the Radio Telescope Effelsberg at the Max Planck Institute for
Radio Astronomy in Bonn, Germany. It is the largest telescope in Europe with its 100 m diameter
dish, which is also fully mechanically steerable, 360 degrees azimuth and 90 degrees elevation
[9]. We also have the new Chinese telescope FAST (Five hundred meter Aperture Spherical
Telescope) [10], which will be completed in 2013. It will be the worlds largest single-aperture
telescope with a diameter of 500 m, and will be situated inside a natural hollow just like the
Arecibo telescope. An even larger telescope KARST (Kilometer-square Area Radio Synthesis
Telescope) [11], which will be a successor to FAST, is also planed in China.

2.2 The Hydrogen line

The hydrogen line is an electromagnetic wave at a frequency of 1.42 GHz and a wavelength of
21 c¢m, which is in the microwave region. It is created by energy released during a forbidden
transition in natural hydrogen atoms. A hydrogen atom consist of one electron and one proton
which have their own spin states. As only two spin states are possible for each of the particles,

2.3 Possible Experiments Radio Astronomy

they can either have parallel spin or anti-parallel spin with respect to each other. In a quantum
mechanical analysis it can be shown that the parallel state has a slightly higher amount of energy,
which is released when a transition to the anti-parallel state occurs for one of the particles. The
energy released forms the so called 21 cm hydrogen line. This is however a so called forbidden
transition, meaning that it has a very low probability to occur, only about 2.6 - 10~1%s~1 [12].
Fortunately the amount of hydrogen atoms in the interstellar medium is so incredibly large that
the transition can be detected continuously with radio telescopes.

2.2.1 Why use the hydrogen line?

The hydrogen line has many properties which are important when working in the field of radio
astronomy. Hydrogen is the simplest of all natural elements and has been around since shortly
after the big bang, and because of that one can see important structures regarding the evolution
of the Universe, galaxies, and solar systems. Other elements also send out signals as part of
similar processes but they transmit even higher frequencies, which places higher demands on the
equipment used for detection. A great advantage with microwaves is that they do not dissipate
in the atmosphere, unlike lower frequencies below 100 MHz, which interact with the ionosphere
and are very difficult or even impossible to detect from Earth. For those frequencies one can
use radio telescope satellites but very few have been built. There has also been international
agreements to only use the hydrogen line for radio astronomy and not for any commercial or
military transmissions, though some countries use frequencies very close to the line which might
yield some interference.

2.3 Possible Experiments

When the ASRT is operational there are some interesting research that could be accomplished
either with one or both of the dishes.

2.3.1 Hydrogen Distribution

The first and most basic experiment is to do a mapping of the distribution of natural hydrogen in
the Universe, we will in all likelihood not however be able to detect any signals beyond our own
galaxy, since they will be much to weak. Mapping is accomplished by pointing the telescope at
some elevation while Earth rotates before it and then repeating this for all elevations until the
entire hemisphere has been scanned. However a blind region will occur since we can not watch
further than the horizon. A scan made by another telescope of the same model can bee seen in
Fig. 2.1. The figure shows the difference in intensity in the various areas, with the concentration
being the highest in the plane of the Milky Way galaxy. A continuation of this mapping is to
use both of the dipoles on the dish, since they are oriented perpendicularly they are able to pick
up different polarizations of the same signal. It would be interesting to be able to compare the
mappings with different polarizations and see how they differ in intensity. The radio galaxy Cygnus
A which is one of the strongest radio sources we can observe in the sky has for example circular
polarization [13] which we could detect and make comparisons.

2.3.2 Interferometry

At the time when both dishes are operational they can be used for interferometry, which will
increase the precision of the system. Radio interferometry uses a method called aperture synthesis
in which the collection of baselines between the dishes each yields a component for the Fourier
transform of the brightness of the object observed [14]. Compared to using a single dish, a radio
interferometer is quite complicated. Each of the dishes must measure both amplitude and phase
of the signal, synchronously using GPS or other high accuracy time source. One benefit of using
two dishes rather than one is the larger collecting area, which makes the telescope more sensitive,

2.3 Possible Experiments Radio Astronomy

Smoothed Distribution of Neutral Hydrogen

100 4 F

zalactic Latitude (deq)

=100 -

150 100 50 0 =30 -100 -150

Galactic Longitude (deg)

Figure 2.1: Hemispherical scan made by the small radio telescope at Glasgow University Observa-
tory, showing the distribution of hydrogen.

but the greatest advantage is the vastly improved resolution, which scales as A/D, where X is
the wavelength of the signal and D is the distance between the dishes. If one of the dishes were
mobile, i.e. placed on a rail, one could change the baseline length and get more components for
the Fourier transform resulting in better images of the object.

2.3.3 Pulsars

An interesting experiment would be to try to detect the high energy bursts emerging from pulsars.
The idea would be to track a pulsar for a long time and measure the pulses as they pass by. The
pulses would be largely widened after traveling through the plasma in space but by stacking all of
the measurements one would slowly build up a clear signal.

Chapter 3

Control System

3.1 Introduction

A fundamental function of the ASRT is to be easily controlled by both students and researchers,
which could have largely different understandings of the system. Software for and by researchers
are often made with text based interaction since it requires the least amount of effort to get the
program running. Since the ASRT will be used primarily by students in experiments the software
needs to be quite intuitive, this is most easily accomplished if the program has a Graphical User
Interface, also known as GUIL. GUL:s also save a lot of time since scripts or loops can be streamlined
more easily and run by the press of a button instead of writing a command in a terminal window.
In our opinion, it also looks more appealing and professional.

3.2 The Controller-box

The controller-box is a hardware controller made to control the movement of the A8-dish. The
dish has two engines, one for moving in the azimuth direction and one for the elevation. The dish
is calibrated so that the zero of azimuth is pointing north. However, because the engines can only
move 180 degrees each in their respective directions, the reset point was chosen to be azimuth
270 degrees and elevation 0 degrees, which makes the dish point west. The way reset works is
that both motors move until they reach their maximum range, always in the same direction. The
benefit of using azimuth 270 degrees as reset is that when commanding the dish, the motors would
need to move a shorter distance overall since the azimuth would move as much in the east as in
the west quadrant. This is assumed since the preferred objects would more often differ in the
east-west direction than in the north-south direction, based on the rotation of the Earth being
west-east, and thereby limiting the amount of times the elevation has to do a complete flip-over
to cover objects in those areas.

The box has an integrated power supply for the motors, delivering a voltage of 24 V and the
motors combined require a current of about 1.8 A. The current is limited to 2 A through a fuse
for safety reasons, since the power supply has the ability to deliver up to 4 A. The controller
uses a microprocessor from Digi® called ‘Rabbit 3000” which handles all of the instructions. For
communication the Rabbit 3000 is equipped with an Ethernet connection and uses the TCP/IP
protocol. This results in some helpful features: the controller does not have to be positioned
relatively close to the user like the use of for example serial ports might require, and it can be
controlled from any computer as long as one has the GUI-software.

10

3.3 Programming Language Control System

3.3 Programming Language

When writing a computer program there are a lot of programming languages to choose from.
Depending on what results the project aims for some languages are more appropriate than others.
My own experience in programming involves C++, Java, and Visual Basic. All are sufficiently
high level languages suitable for this project. As my knowledge in working with larger software
projects is poor, I could not rely much on previous experience when choosing a programming
language. Instead, I set some goals to help single out the most appropriate of these languages for
this work. Using a language of which I was not familiar with would waste time in development.

The program was to be written primarily for a Windows environment as it is the most used
operating system and it should be familiar to most of the users. It should however be noted
that making a Linux compatible version as well, should be possible. The program should also be
somewhat low on system resources as it would later be required to save data as it was received
from the dishes, which might require data processing on arrival.

e Visual Basic
As Visual Basic is a Windows-only language it was not considered to be applicable, as it
would not enable the program to be easily changed and adapted for Linux if desired.

o Java
One advantage of Java is that it is quite easy to use across multiple operating systems. It was
also the language I had the most recent experience with so it could be easier to work with.
But Java requires separate software installation on every computer used for the controller
program, which makes it less user friendly for students and researchers. The Java software
must also be run in the background to enable the controller to work, which consumes a lot
of computer resources making Java a bad alternative.

o C++

Having a reputation of low resource consumption, if programmed correctly, C++ has become
one of the most popular programming languages. Low resource consumption comes from
that C++ is somewhat less a high level language than the others, giving the programmer
more control of the underlying systems but it also makes the programming a little more time
consuming. It can be used for both Windows and Linux systems, making it the most viable
choice of the considered languages. Additionally, since the controller-box firmware is written
in C and some firmware modification might be needed, it would be useful to use C++ for
the GUI since they are fundamentally the same, making the overall development simpler.

3.4 GUI Library

C++ does not contain any library for making graphical user interfaces. To create GUIL:s in C++
one must either write a custom GUI library or use an external library which adds the required
functions to C++4. Some of the most popular ones are Visual C++, GTK+ and Qt. Visual
C++ like Visual Basic is used only in the Windows environment and would not cover our needs.
GTK+[15] and Qt[16] are both multi platform supported but suffers from kind of the same issue,
the library is not standard in either Windows nor Linux and must be installed on the computer
running the program. There are however ways to work around this and Qt was deemed the
easiest, where only a few files placed in the folder with the executable-file would do the trick.
More advanced measures like building the program ’static’, where the required files are included
inside the executable, is also supported by Qt.

3.41 Qt

Qt is currently being developed by Nokia and has a syntax very similar to C++. It contains
functions specifically for developing GUI:s, and can be used with or without graphical designer

11

3.5 Commands Control System

Table 3.1: Commands for the controller-box

Command string ‘ Description

Az, X;ELY Move the dish to aim at the point with az-
imuth X and elevation Y. X and Y are integer
degrees of azimuth and elevation respectively.

stop Stop the movement before it has reached its
target position.

reset Reset the dish to the starting point.

ver Send the version number of the current
firmware.

tools. The graphical tool named Qt Designer makes the design part a lot easier, it has a simple
drag-and-drop system and saves hours upon hours of time, which would otherwise be spent coding
the GUI [17].

3.5 Commands

The main function of the GUI is to send commands to the controller as per the user’s request.
The controller was setup to receive all commands as text strings, the most fundamental functions
of the controller can be seen in Table 3.1.

These commands were handled quite well by the controller at the start of the project but a
few bugs in the firmware had to be corrected as it progressed.

3.6 Functionality

To make the usage more streamlined the GUI was extended with other functions than the basic
commands. The functions are made to simplify the use of the telescope, so that it can operate
with as little interaction from the user as possible. Since most research will require the telescope
to run for a very long time and changes in position is very common.

3.6.1 Scanning

One of the goals for this project was to be able to create a hydrogen-map of the hemisphere. For
this to be possible some functions had to be developed which would automate the movement of
the dish, and there are in principle two possible methods to reach the desired result. One method
known as the drift-scan technique, is to have the dish fixed at a certain elevation and have Earth
rotate before it, collecting data during one full revolution, 24 hours that is. Then increasing the
elevation and repeating the procedure up to 180 degrees (180 refers to the motors total movement
range and not the coordinate system), see Fig. 3.1. Depending on the beam width of the dish this
will take a long time. Using the 7 degree beam width of our antenna one can calculate it to take
almost 26 days to map the sky completely using this method. This is good if high sensitivity is a
priority, but far too long to be satisfactory when using the telescope for lab work with students.

A less time consuming method would be to have the dish scan vertically instead. The Earth
move about 15 degrees in one hour, the dish must then elevate 180 degrees and back over ap-
proximately that time to be able to scan the hemisphere, see Fig. 3.2. This will result in a total
scan only taking 24 hours to complete, much more reasonable for lab work. It will however result
in more complex handling of the data since a lot of overlapping will occur. The short scanning
time was deemed the more important component and the work was centered around adapting the
scanning routine for it.

After the development of the scan it was realized that with some modification the function
could handle both patterns, it will however require some adaptation from the user.

12

3.6 Functionality Control System

)
=) Elevation
7 . increments
—
Direction of rotation

of the sky, seen form earth,

Figure 3.1: Movement pattern of how a horizontal drift-scan would cover the hemisphere in 26
days.

Direction of rofation ~ \
of the sky, seen form earth. \\

Overlapping Area

Figure 3.2: Movement pattern of how a vertical scan would cover the hemisphere in only 24 hours.
Some overlapping will take place.

13

3.6 Functionality Control System

Declination Wernal equinox

Ecliptic

Eight agcenszion

Figure 3.3: Equatorial Coordinate system, with Earth inside a depiction of the hemisphere. The
Earth is tilted to match the difference between the ecliptic and equatorial plane. ((© Wikipedia
under GFDL.)

3.6.2 Tracking

After mapping the sky some other observations may be of interest, tracking objects is one of them.
All objects that can be considered fix, i.e. stars, galaxies and other radio sources have been given
permanent coordinates in the equatorial coordinate system [18] expressed in what is called right
ascension and declination, see Fig. 3.3. Consider the plane in which the Sun moves during one
day seen from Earth, this is called the ecliptic. Then take the plane made up of Earth’s equator
(the equatorial plane) the point where they cross is called the vernal equinox and is the starting
point for right ascension and declination. The important thing to notice is that these coordinates
mark where objects are positioned when observed from a point on Earth. Some telescopes use
equatorial mountings and gradings, which makes for easy observation: align with the northern
star and you can simply set the position of your object.

If the telescope does not have an equatorial mount, like in our case where instead there is a
horizontal mount, commonly know as an altazimuth mount, pointing becomes more difficult since
some coordinate transformation will be needed. When transforming from equatorial coordinates to
horizontal one must be aware that the objects position changes with time not only on small scales
but also on large scales. For this purpose one follows an algorithm which takes Earths movement
variations into account and yields the altitude (angle of elevation) and azimuth of the object. To
track an object one must simply repeat the algorithm continuously during the observation, and
each time a slight variation in position will occur. The motors on the dish have a precision of
1 degree, which means that continuous exact calculations are not needed, and the algorithm is
only repeated once every minute. Equatorial coordinates are often given in hours, minutes and
seconds instead of degrees, to convert use the 15 degree per hour rotation of Earth.

Giving the system capability to track satellites and planets have also been considered, but time
constraints made this less of a priority and so it was not implemented.

14

3.7 User Information Control System

3.7 User Information

The GUI have been split into a few separate areas which deal with the different functions of the
program. See Fig. 3.4 when referred to the different areas and use of functions.

3.7.1 Dish Mode

The Dish Mode area is where one chooses the running mode to be used; either running the dishes
separately or in interferometric mode. The GUI has been adapted for using both antennas even
though currently, only one dish is operational. For each dish there is an IP address and a port to
be specified. The program have default values in the configurations-file in the program conf-folder,
values which can be reset from the Menu tab. In this area you also Connect and Disconnect from
the specified dish.

3.7.2 Fix Position

After connecting to a dish one can use the other parts of the program, next is the Fiz Position
area. Here you can set the dish to move to a specific position, either in horizontal or equatorial
coordinates. Choose coordinate system, enter the coordinates, and press Set Fix Point and the
dish will start moving toward that point. When the dish has reached is destination, the Current
Position label will be updated with the new position, in both coordinate systems. When you have
set a position you can continue with tracking that specific point in the sky, e.g. if you use the
default equatorial position you can track the Andromeda galaxy. You are also required to set a
time limit for how long you wish to track the object, up to 24 hours is possible.

3.7.3 Hemispherical Scan

For mapping purposes there is the Hemispherical Scan area, this will have the dish running the
scan algorithm discussed before. This part has also got a required time limit with a maximum of
24 hours.

3.7.4 Other Functions

Both scanning and tracking have their current progress shown in the bottom progress bar for easy
observation. More extensive information on the system is shown in the Controller log window.
Here you can see tracking and scanning information and also communication from the Controller-
box which is displayed in red to highlight them. There are also two important buttons in the
top right of the program; the Stop and Reset Position buttons. Their implementation are quite
straight forward, Stop immediately stops the dish in its current movement and also stops any
running scan or tracking sequences, while Reset Position moves the dish to its default position.

NOTE! It is recommended to start each new run of the system with resetting the
dish to azimuth 270 degrees and elevation 0 degrees, using the Reset Position button.

More information on the GUI can be found in the program’s help-section, under the Help tab.

15

3.7 User Information

Control System

+ Angstrém Synthesis Radio Telescope (ASRT) - Dish Controller

Venu Help About
Dish Mode
@ Dish B8 IP: 130.238.30.234 Port: 5001

(0) Dish &7 IP: 130,238.30.200 Port: 5001

Disconnect

Fix Position

. (@ Horizontal Coordinates () Equatorial Coordinates
Set Fix Point
Azimuth [deg]: 0 Right Azcension [hh:mm:ss]:

Stop
Connect
() Interferometric Reset Positon

Controller log
Hemispherical Scan

Start 5can

0:42:44., 3
Elevation [deg]: 0 Dedination [deg:mm:ss]: 41:16:9
Azimuth = Right Ascension =
Current Position:
Elevation = Dedination =
Track o =
Fix Point Total tracking time [hh:mm:ss] 00:00:00 |

Total scanning time [hh:mm:ss] 00:00:00 5

-

Scanning & Tracking Progress

Figure 3.4: The GUI in its final stage, version 0.8.

16

Chapter 4

Radio System

Compared to sound waves, which are audible below 20 kHz and easily received and sampled by
a computer’s sound system, microwaves oscillate about a million times faster and requires an
external receiver. Basically, there are three different techniques to design a sampling receiver.

Digital direct conversion using Nyquist sampling

The radio frequency (RF) signal is lowpass (LP) filtered and sampled at at least two times the
frequency of the highest desirable frequency, so called Nyquist sampling. In our case that would
be almost 3 GHz to leave a margin for the LP filter fall-off. Analog-to-Digital-converters (ADC)
with this performance are available but they are very expensive and require other very fast, and
also expensive, components to digitally mix and bandpass (BP) filter the signal to a manageable
data rate.

Analogue baseband receiver using I-Q sampling

The RF signal is converted to baseband by analogue mixing and then LP filtered. This makes
the center (mixer) frequency appear at 0 Hz. To correctly handle frequencies below the center
frequency, which appears to be negative and would then be folded into the positive area, requires
that the signal is analytically continued into the complex domain. In principle this is possible by
using the left and right channels of a modern sound card. However, obtaining an analogue baseband
signal of high quality is difficult and in practice one would have to employ a superheterodyne
receiver, which mixes the signal in two stages: first to an intermediate frequency (IF) and then
to I-Q baseband. This is achieved by splitting the signal into two after the initial mixing down
to an IF frequency. The two are then mixed down separately to baseband, the in-phase (I) signal
use a standard mixer while the quadrature-phase (Q) signal use a mixer which shift the signal by
90 degrees. The I and Q signals correspond to the real and imaginary parts respectively, of the
analytic baseband signal. This requires two oscillators, three mixers, as well as BP and LP filters,
for each antenna polarization, which would also make the radio system expensive.

Analogue IF receiver with digital direct conversion

This is a hybrid solution where the RF signal is mixed to an IF signal, using an analogue mixer,
and direct converted to a baseband I-Q signal using a digital mixer and filter chain. Since a digital
high-frequency (HF) receiver was available that could take an IF signal as input and output a
digital baseband I-Q signal, this was the preferred solution.

The idea of the receiver is to take the signal of 1420 MHz and digitize it to a bandwidth of
about 100 kHz so analysis can be done by processing the data on a computer. To be able to do
this one has to perform a series of actions on the signal to adapt it for the digitizing process.
Each action is represented by a component in the receiver chain. Since we have two signals with

17

4.1 Components Radio System

different polarization, horizontal (H) and vertical (V), we need to have two paths with identical
components. The signal will go through the following events when received by the antenna, see
Fig. 4.1 for a block diagram over the system.

1

The incoming signal is received by the dish which reflects it towards the two H and V dipoles
in the antenna focus.

Directly at each dipole, a Low Noise Amplifier (LNA) is connected which amplifies the signal
to compensate for the attenuation in the cable on its way to the receiver.

A long cable with low attenuation leads the signal to the receiver, which is situated inside
the building.

. At the ends of one of the cables a Bias Tee is connected, it is used to get power to the first

amplifiers.

Since we do not want any other signals than the one at 1420 MHz a bandpass filter around
that frequency is used to block all other signals and noise.

Another amplifier is then used, as we want a strong signal for the mixer to work with.

The signal enters the mixer which also has another input for a local oscillator (LO). Mixers
work in a way which takes two signals as input and then outputs all the sums and differences
of the two signals.

e The oscillator outputs a stable signal, which is somewhat lower than 1420 MHz in our
case.

e It gets amplified since the mixer needs a quite strong signal to work correctly.

e Since we have two signals from the antenna we must use the same oscillator signal for
both mixers so they are synchronized, for this we use a so called splitter to split the
LO signal into two.

The mixer outputs several signals but we only want the one which is made from the fre-
quency difference between the signals, which will be some tens of MHz depending on how
the oscillator is set.

As a last step we use a bandpass filter around the desired IF output to get rid of all other
frequencies from the mixer.

The signal have now been adapted so that it can be sampled and digitized. The final output
will be decided by the specifications from the sampling equipment and the frequencies it
can handle. In our case we used a digital baseband receiver, which accepted up to 25 MHz
input frequency. However it was decided to use a higher input frequency and so called
undersampling. The reason for this is economical. since the goal was to keep the cost down
it was decided to use bandpass filters that where readily available from a previous project, see
the discussion on undersampling in Subsection 4.1.7 for more information on the implications
of this particular choice.

4.1 Components

As previously mentioned, it was important to assemble the system at a low cost, it was preferable
to use as much of the components that were already at hand to limit the amount of purchases
needed. A similar receiver chain had been used for another project for 2.4 GHz, but several of the
components could be used also for 1.42 GHz.

18

Radio System

4.1 Components

13INY3IH13

a¥vd
ONITdIAVS

“WPshis 42019094 Y] 4Of WDLEDID Yo0)g [¥ unbi]

|ZHINOY)
dg

ZHINO9

d4

H3LLMNdS]

VNT—

zHiNoOYT 1NdNI AZT
dg 331-Svid

-

dNV— HOLVT11IDSO

VN1

ZHINOOYT|

dg

VN1

19

4.1 Components Radio System

The least expensive way would probably have been to construct all components ourselves, but
the amount of time needed for design and assembly would be far too long for it to be feasible
within the six months alloted for this project. The quality of the circuits was also a concern as
purchasing the items from a reputed manufacturer would in all likelihood lead to a better result
than an attempt by us to produce components to the same standard. Much of the work therefore
consisted of analyzing data sheets of suitable parts, and based on the findings decide which of the
available components could be used and which had to be purchased. See Appendix A for a list of
components used for the receiver along with the most important specifications for each.

4.1.1 Amplifiers

For the system, five amplifiers was needed, one pair outdoors by the antenna, one pair inside the
receiver box and a single one for amplifying the oscillator signal. The amplifiers in each of the
pairs must be of the same model so that the two signals are affected by noise the same manner
and have the same frequency characteristics. The same is true for the entire signal chain, the
two chains should ideally be mirrors of each other, but there are a few exceptions, which we will
address later.

Important when choosing amplifiers are the amount of gain they deliver and also how much
noise they produce as a by-product. Since the signals we are searching for are very weak, almost
no noise is acceptable. For a good result, we must therefore use low noise amplifiers (LNA). The
low noise characteristic comes at the expense of the gain, which is often significantly lower than
for amplifiers not made for low noise. The most important part is the first LNA which will set the
standard for the rest of the system. Noise from other components in the system will be limited
depending on the Gain of the the first LNA [19] [5]. Amplifiers are among the more expensive
parts in a system, especially if they have low noise, so it was very fortunate that there were enough
amplifiers which matched our specifications already purchased, so that no additional ones were
needed.

Amplifier model: LNA 1420 There were two LNA:s available that had been bought especially
for this project around the same time as the antennas. They were custom made for the hydrogen
line by a company specializing in radio astronomy applications, and they have a very small noise
figure. These would be placed outdoors as close as possible to the antennas before the signal cable,
they also have weatherproof casing which means no special measures had to be taken to keep them
free of moisture.

Amplifier model: ZFL-2500VH-+ Inside the receiver box the other amplifier pair is placed
after the bandpass filters so that only the frequency we are interested in is amplified. These where
also of the low noise type but with not quite as low noise figure as the first pair since these have
a much wider bandwidth, almost 1 GHz. The attenuation in the 25 meters long signal cables and
the need to get a strong signal for detection, made these amplifiers necessary.

Amplifier model: ZX60-3011+ The task of this amplifier is not as critical and does not have
to be of the same low noise characteristics as the others, though it still has to be of good quality.
It amplifies the oscillator signal used for mixing down the hydrogen signals. The reason for its use
is that we need the same signal for both mixers, meaning we need to split the signal. This results
in a drop of about 3 dB in signal strength which we need to compensate for. Also the mixers need
a certain power to work properly, and so this amplifier is needed.

4.1.2 Filters

Since we do not want Radio Frequency Interference (RFI) from radio stations or mobile phone
signals we need to filter out all unwanted signals. This should be done as early as possible in
the chain, preferably just after or even before the first amplification. This would lead to the

20

4.1 Components Radio System

filters being placed outdoors which would not be a problem if considering the weather, but the
construction of the filters and their required placement makes them quite vulnerable for stress
factors and they would quite easily break, so they are instead placed inside the receiver box,
filtering after the signal cables. Another filter pair is also needed for the output from the mixers
and a few interesting factors have to be considered. The choice of filter frequency is closely tied to
the choice of mixer and oscillator, see the section on mixers below for a more detailed explanation.

Filter model: VBFZ-1400-+ For the first filter pair we want a bandpass filter around the
hydrogen line frequency of 1420 MHz. It turned out to be a little difficult to find good bandpass
filters at that specific frequency; most were a little too wide band than one could hope for. Even
the filter chosen has a 100 MHz bandwidth (1350 — 1450 MHz), however this will not cause large
problems as the frequencies in that range are not used very much by other applications than
radio astronomy [20]. The problems that might occur from interference with other services will
be filtered out by additional filters later in the chain.

Filter model: SBP-60+ This bandpass filter is used to filter out the additional frequencies
from the mixer which we do not want. The decision to use a filter at 60 MHz was mostly based on
that we already possessed those filters and would then save money, but also the range of products
was pretty scarce for frequencies below 100 MHz. The only other viable choice was basically a
filter at 10.7 MHz, this might sound like a good choice since our ADC:s operate at 50 Msamp/s.
However it turns out to give some additional problems, see the section on mixers.

4.1.3 Mixers

The mixer is one of the more important parts of the receiver as its task is to transform our high
frequency signal to a lower frequency which we can sample and analyze. The output frequencies
from the mixer consists of all of the different combinations of the hydrogen signal and the local
oscillator signal. One need to choose an oscillator frequency which gives an output frequency
appropriate for our sampling circuit.

Output frequency = Signal - Oscillator [21] (4.1)
60MHz = 1420MHz — 1360M Hz (4.2)
—10MHz = 1350MHz — 1360M Hz (4.3)
9OMHz = 1450MHz— 1360M Hz (4.4)

S5MHz = 1415MHz —1360M H=z (4.5)

T0MHz = 1430MHz — 1360M Hz (4.6)

The output frequencies, from various inputs, we get when we choose 60 MHz as the desired
output can be seen in the Egs. (4.1) to (4.69). For a local oscillator signal of 1360 MHz, the first
bandpass filter lets through frequencies between 1350 MHz and 1450 MHz, those frequencies result
in 90 MHz and (—)10 MHz. The minus sign is only for mathematical purposes as in reality this
means that it is folded back into 10 MHz. The filter used for 60 MHz lets frequencies between
55 MHz and 70 MHz through, which if we calculate backwards means that only signals between
1415 MHz and 1430 MHz will be detected. Since frequencies at that interval is almost exclusively
used for radio astronomy [20], we should have no problems with signals from other sources. We
can conclude that the local oscillator (LO) signal needed is 1360 MHz.

21

4.1 Components Radio System

Output frequency = Signal - Oscillator
100MHz = 1420MHz — 1410MHz (4.7)
—60MHz = 1350MHz— 1410MHz=z (4.8)
4A0MHz = 1450MHz — 1410MH=z (4.9)
—10MHz = 1400MHz— 1410MHz (4.10)

If we look at a filter at about 10 MHz, which would be more appropriate since the sampling
card only supports frequencies up to 25 MHz, the following relations result; see Egs. (4.7) to
(4.10). We see that it seams to work for the desired frequency, but in the last equation we can
note that the result for an unwanted signal at 1400 MHz would be folded and result in a signal
mixed down to the same frequency as the hydrogen line. This might lead us to believe that a
signal at 1400 MHz is in fact a signal at 1420 MHz, which is totally unacceptable and would lead
to false data. One could then conclude that mixing down to 60 MHz is the best choice. There is
however a method of double mixing which could improve the end result of our signal.

Two stage mixing

In our case a two stage mixer setup would mean using both of the considered BP filters at 60 MHz
and 10.7 MHz. You simply take the signal you have filtered out at 60 MHz and use it as an input
for another mixer which gives an output of 10.7 MHz. This will result in even more unwanted
signals getting removed, clearly the best option. However as mentioned earlier one must consider
the cost of those additional parts. One would need two mixers and filters, and another oscillator
with amplifier and splitter, significantly increasing the cost of the system, and for quite little gain
compared to the interference from other signals when using the 60 MHz setup only.

Mixer model: ZFM-15+ As with many other components a suitable candidate was already at
hand, and it was an easy task of confirming its usability. It is able to mix frequencies up to 3 GHz,
see A.3, more than enough for our project. One could perhaps even have wished for the mixer
to not have such a broad input range as that would have dampened out some of our unwanted
signals further.

4.1.4 Oscillators

When the preferred oscillator frequency has been determined to 1360 MHz one must find a match-
ing oscillator for that frequency. It turns out this was not at all as trivial as one would first think.
We had to try three different approaches before finding one that worked, and the result was not
quite ideal.

* First attempt: VCO

The first suitable product we tried was a Voltage Controlled Oscillator (VCO). VCO:s are set
using a certain input voltage which then will generate an output frequency based on that voltage.

Oscillator model: ZX95-1420+ In our case around 14 V gave us the frequency we wanted. It
was quite early established that the voltage input had to be very stable or else the frequency would
fluctuate greatly. The first measurements showed that the oscillator seamed stable enough, but
as the receiver started to get finished and real measurements could be done, a spectrum analysis
showed the signal which should have been a sharp spike looked more like a Gaussian curve. This
was not at all acceptable and the oscillator had to be stabilized.

22

4.1 Components Radio System

4.7k
_ LE
|_ K
47
2 RAp———— K
4.7k DATA
RAO—— '}
0OSC1/CLKIN
— GND VDD
NN N
PIC16F84A REF FREQ 50MHz| Frea. Synthesizer
DSN-2050A-119+ D
VCO VCC 124V
RF OUT
5V O Osc. \/ PLL VCC +24V
4MHz

Figure 4.2: Circuit diagram over the frequency synthesizer and the microcontroller. The zener
diodes are specified to 8V reverse voltage to limit the input to the synthesizer.

* Second attempt: Phased Locked Loop

Stabilizing an oscillator is made using a so called Phase Locked Loop or PLL. It feeds back part
of the output frequency and compares its phase to a stable reference frequency, often a crystal-
based oscillator [22]. It then changes the input voltage to match the change in frequency and
after a few iterations the output frequency is stable. Constructing this setup yourself is quite
time consuming, and as this was in the very late stages of the project a new integrated VCO and
PLL circuit, called a frequency synthesizer, was purchased, removing the old VCO. The frequency
synthesizer also contained a programmable circuit which had to be set every time at power on.
For this initialization we had to use some kind of microcontroller, the one deemed the easiest and
quickest to get working was a PIC microcontroller.

PIC microcontroller - PIC16F84A

To program the PIC one could use either C or the Assembly language. C would perhaps have
been the obvious choice but compilers for C code is not included with the controller and must
be purchased separately, while Assembly compilers can be downloaded from the manufacturers
homepage [23]. So the choice was made to use Assembly and a few days time was devoted to get it
working properly, with the added work of constructing a circuit board for mounting the controller.
The Assembly code for the microcontroller can be seen in Appendix B.

Frequency Synthesizer model: DSN-2050A-119+ The synthesizer has the ability to gen-
erate and stabilize frequencies from 1100 MHz to 2100 MHz. A drawback is its quite weak output
of only 0.5 dBm which makes the subsequent amplifier even more important. We actually pur-
chased two of these synthesizers, and unfortunately managed to burn the first one by accidentally
increasing the input voltage above the maximum limit. The problem here was that we never got
the synthesizer to work properly (even with the correct voltage), it simply would not accept the
programming. Other frequencies were tried, default programming sequences used, but nothing
seamed to help. The choice was made to abandon this part of the project because of time con-
straints, the project had already been extended by one month because of the oscillator and at
least one more would be spent finding a new solution.

23

4.1 Components Radio System

Table 4.1: Signal strength loss for different cables and frequencies. [24] [25]

Frequency RGH8 [dB/100m| RG214 [dB/100m| Aircom Plus [dB/100m| RG402U [dB/100m]

1000 MHz 53.7 28.6 13.4 37

2000 MHz 83.7 41.9 20.1 -

3000 MHz 107.5 51.7 25.9 -

5000 MHz - - 35.9 91

1420 MHz 16.25 dB/25m 8.75 dB/25m 3.75 dB/25m 10 dB/25m

* Final attempt: External signal generator

The resulting solution was to use an external signal generator connected to the receiver. A case
connector was mounted on the front of the receiver box and connected to the LO-amplifier via a
cable inside the case. The original VCO was also left inside the case together with a piece of cable
so that one could use this in case there was no external generator available, or just for system
testing.

Power Splitter model: ZAPD-1750-S+ If we want to be able to do accurate comparisons
between the individual phases, the two signals we get from the antennas must use the same
oscillator signal. For this we will need a splitter to simply split the LO-signal into two. The
important part here is to know that the mixers requires an input of at least 10 dBm, and some
splitters can not handle that much power. The model chosen can handle up to 10 W (40 dBm)
which gives a good margin.

4.1.5 Signal cables

The A8-dish is placed outdoors on the edge of the roof of house 8, the plan was to have the signal
cable run from the dish through a nearby wall, and down to the receiver placed in a cabinet on the
floor below. According to rough measurements about 25 m cable was needed for this, including
a few meters extra in case of difficult cable management at installation. We considered three
different cables for use in this project, the regular RG58 cable, the slightly better RG214 and the
high quality Aircom Plus® cable. The signals they are to carry are of very high frequency, and
the higher frequency one uses the more impact the attenuating properties of the cable have. RG58
works for short distances even at quite high frequencies, but if the cable is very long the signal will
eventually become substantially attenuated. It does however have the advantage of being light
and flexible. The less attenuation you want the more shielding must be used to prevent leakage
through the shield. Also other dielectric material as well as a thicker inner conductor are required.
This makes the cable more rigid and a bit harder to handle. In addition, cable routing becomes
more difficult. A comparison of the attenuation of the different cables is shown in Table 4.1.

Signal cable model: Aircom Plus We clearly see that the Aircom Plus is the superior cable
for our application. There is of course the previously mentioned problem of cable routing when
dealing with stiff cables like this one, but after surveying the intended area no eventual problems
was found and installation should go smoothly. More information on the Aircom Plus cable in
Appendix A.7.

Signal cable model: RG402 It is imperative that the chains of the different channels are
of the same length to keep the signals in phase. To make sure this is accomplished we used a
semi-rigid coaxial cable, basically an inner conductor surrounded by dielectrica and a solid copper
shield, which can be bent and will then keep its shape. The length is determined by how much
the channels differ, which was about 3 cm, this is mostly from the use of two Bias Tees in one of
the channels.

24

4.1 Components Radio System

1kQ 5.6 kO
T —e——+ 1}
| |0.01 wF
i
+24v 68 uH e
o : Tt ©
LM2676-ADJ 220 F
IN 220 pF l | ouT
JE— Zli(aov MAX)
@ . O

Figure 4.3: Circuit diagram of the step-down circuit. It reduces 24 V to 8 V and limits the heat
loss very efficiently since the energy is stored in the capacitor and inductor, instead of heating a
resistor.

4.1.6 Power supply

Amplifiers, sampling circuits and oscillators are power hungry parts and require specific voltages
to work. A power supply was needed, integrated into the receiver box, which could deliver the
necessary voltages and currents for the components. At first the power supply needed to provide
up to about 16 V as this was about what the original oscillator needed, and so we purchased a
switched power supply with the closest matching voltage which was able to provide 24 V. It could
also deliver 1.3 A which at first was thought to be enough and with quite good margin, but later
it was realized that the ADC on the sampling card required a lot more current than anticipated.
This did not become obvious until the system was ready for the first tests and the current budget
was calculated again. The result was that the power supply would be able to almost exactly supply
the needed current. A slightly higher startup current however managed to trigger the supply’s
current limiter, which was not reset until after a power down. A capacitor had to be put in to
limit the startup current, after which it all worked fine.

Regulators and step down

The voltage needed from the supply was 12 V for all the five amplifiers, 5 V for the sampling card,
the microcontroller and part of the synthesizer, the other part of the synthesizer required 24 V.
To achieve these different voltages regulators was used for 12 V and 5 V, before the 5 V regulator
a step down from 24 V to 8 V was used to limit the heat loss somewhat. A circuit diagram of the
step down is shown in Fig. 4.3.

Because of the heat loss from the power supply a fan was mounted in the top of the case to
exhaust the hot air so that the temperature in the receiver was kept low. All the used components
are sensitive to heat which is why the excess heat should be expelled. Close to room temperature
is ideal but the receiver was measured to just above 30°C, which is acceptable.

Bias Tee

A problem with mounting amplifiers directly on the dipoles are that they must be provided with
power. This would normally result in separate cables being put up, and they need to be fastened
properly so they do not stretch and break while the dish is moving. To solve this problem one can
use two so called Bias Tees. What it does is that it inputs a bias, of in our case 12 V, on the signal
cable in one end of the cable, which can then be extracted in the other end by the other device.

25

4.2 Evaluating The System Radio System

Bias Tee model: ZNBT-60-1W-+ This device can handle frequencies up to 6 GHz and RF
signals of 30 dBm. Another advantage is that it has N-connectors which makes it easy to connect
to the Aircom Plus cable as it also utilizes N-connectors. One item of this type was already
purchased and only another one was needed. They are quite expensive but the benefits of using a
bias tee is well worth the price.

4.1.7 Receiver Circuit Board

When all analog signal processing have been completed it is time to convert the signal to digital
form for storage and analysis. This is implemented with a receiver card designed by Walter Puccio
at the Institute for Space Physics (IRFU), originally for research in the 100 MHz area. The card
has been made in about a dozen copies and is able to receive up to three channels. However
the card we used had only been equipped with two 14 bit Analog-to-Digital converters (ADC),
resulting in only two channels and making it perfect for our project.

Each channel has a bandwidth of 74 kHz and a sampling frequency of 50 MHz, giving us a
maximum input frequency of 25 MHz when the Nyquist sampling theorem is taken into account.
The bandpass filters at 60 MHz will limit the bandwidth to 15 MHz, from (5 —20) MHz. All other
frequencies will be blocked. The card also utilizes a 10 Mbit Ethernet connection for transmitting
data to the user.

Undersampling

For sampling we utilize a common technique which might seem strange at first. We will use a
sampling frequency of 50 MHz which is less than the maximum frequency of 60 MHz that we
receive. This is far from the recommended 120 MHz for sampling such a signal, and this will cause
us to have folding frequencies. As noted in the sections on filters and mixers, Sec. 4.1.2 and 4.1.3,
we did not want any folding in those parts because it may cause undesired signals to enter our
sampling bandwidth. However, here we will use this phenomena to our advantage.

The maximum input frequency of the circuit board is 25 MHz, so frequencies higher than
25 MHz, i.e. (25 — 50) MHz, will be folded down to the (0 — 25) MHz band and also mirrored,
meaning a frequency of 26 MHz would appear to be at 24 MHz. But frequencies in the range
(50 — 75) MHz, will be folded twice and not mirrored [26]. For our frequency at 60 MHz this
means that it would appear to be at 10 MHz, and so we can conclude that this frequency is in fact
our hydrogen line. One should note that our ability to make these operations is based on filters
blocking the unwanted frequencies beforehand, otherwise we could not assume that this signal
would be the hydrogen line. Using this kind of undersampling enables us to get the same results
using less equipment, e.g. we save one down-mixing step and filtering as mentioned before.

4.2 Evaluating The System

An important property of the system is to know how weak a signal one will be able to detect. In
radio astronomy it is often called sensitivity (.5;), or otherwise known as minimum input signal
power. In order to calculate the sensitivity we calculate the noise figure of the system with the
Friis formula for noise, and the expressions below from Pozar [19], where:

Feaple — 1 Frpiaz — 1 Finaz — 1
Fsys = FLNAl +
GLNa1 GiNAl - Geable GLNA1 - Geable - GBP1420
Fyvixer — 1 Fgpeo — 1

GiNA1 - Geable - GBP1420 - GLNA2 GLNA1 - Geable - GBP1420 - GLNA2 - GMIXER
0.46 dB (4.11)

26

4.2 Evaluating The System

Radio System

Fsys
B =60 MHz
Giot = 34.12 dB

N,

Tsys

T, = 290 K
SNR =3 dB
Tone = 100 K

k=138-10"2 J/K

Tsys =

(Fsys

The total Noise Figure of the system.

The Bandwidth after the mixer.

The total gain the system after loss from ca-
bles and other components.

The output noise power.

The equivalent noise temperature of the sys-
tem.

Actual system temperature, specified as room
temperature.

The minimum required Signal-to-Noise ratio.
The noise temperature of the sky at
1420 MHz [27].

Boltzmann constant.

—1)Tp = (1.112 — 1)290 = 32.48 K

NO = k(Tant + Tsys)GtotB = —65.5 dBm

(4.12)

(4.13)

(4.14)

The resulting sensitivity from the components is quite high, which largely depends on the good
LNA put at the dipoles, and should be enough to detect the hydrogen line. This is of course an
estimation and the actual sensitivity might be slightly smaller.

27

Chapter 5

Results

5.1 The Angstrém Small Radio Telescope

After long months the result was finally a steerable telescope able to receive and sample the
hydrogen line. At the end of the project the parts that were completed were:

e The implementation of a Graphical User Interface for steering the dish, with improvements
made to the existing controller-box firmware.

e The construction of a complete receiver system including digital sampling of the signal.

Both the receiver and the controller utilizes an Ethernet connection, and have been given local
IP addresses and are connected to a router, making them accessible from outside.

5.1.1 The Dish

After using the dish for testing the controller program during the development phase it was
notable how well preserved the dish was, almost no rust, or other effects from harsh weather. The
perforation makes the dish light and easy to work with, as well as limit the effect from strong
winds, see Fig. 5.1 and 5.2. The tripod made for the antenna is however not at all light, being
made from galvanized steel. This caused some small problems as the tripod and motors had to
be brought down from the roof, and placed inside during the development of the controller GUL
There is unfortunately no elevator up to the roof of House 8, instead there is a small stair, with
a chain block for bringing up heavy equipment. It took some effort to get the pieces down, and
later up, but without incidents. Cables were fastened with cable ties and secured in a way so that
they would not be stretched or damaged as the dish turned.

5.1.2 The Motors

The motors were in very good condition despite not being used for a few years, only some basic
maintenance with grease on the gears was needed. A slight improvement have been the calibration
so that the motors move 180 degrees in each direction. It should be noted that since the motors
were not originally intended for use in both elevation and azimuth, the construction implies that
the center pivot point will change somewhat when moving the dish in azimuth, it is however largely
negligible.

5.1.3 The Controller System

Much of the work made on the controller box itself was basically debugging in conjunction with
the development of new functions in the controller GUI. Parallel to the calibration of the motors
some values had to be edited in the controller box firmware as well, to get them synchronized.

28

5.1 The Angstrém Small Radio Telescope Results

Figure 5.1: The dish in its final stage with all cables and amplifiers connected, pointing at the reset
point, Azimuth 270 degrees and elevation 0 degrees.

29

Results

5.1 The Angstrém Small Radio Telescope

8

»

NN

A T N
e .,

,A »

Figure 5.2: The motors, with the bottom one mounted perpendicular to the top motor.

30

5.1 The Angstrém Small Radio Telescope Results

Also some of the cables from the controller box had to be extended to reach all the way out to
the dish, see the controller box in Fig. 5.3.

Figure 5.8: The controller-boz.

5.1.4 The Receiver System

The receiver can be split into the outer and inner parts. The outer parts are the amplifiers
mounted on the dipoles, see Fig. 5.4. The implementation of these are fairly straight forward and
the mounting was easy thanks to the use of the bias-tee. Note that one of the signal cables have
a red colored connector to distinguish them.

As for the inner part, it is comprised by the case of the receiver and its components, see
Fig. 5.5. The case has; input connectors for the two channels and the external oscillator for the
mixer, and an output Ethernet connector, on the front. It also has a power input for 240 V in the
back with a power-ON LED on the front. The case itself is perforated to allow for airflow, with
the fan mounted in the top. Also note the red colored connector on the same cable as can be seen
outdoors, see Fig. 5.4.

The inside of the receiver is even more interesting, all the components are neatly mounted on a
board with a thin layer of copper to give them a common ground, see Fig. 5.6. Cable management
has not been a priority since it would take valuable time away from the actual project. Note the
little semicircle cable of channel two, that is the effect of the two channels being of different length
because of the Bias Tees. To keep the same phase for the channels it has to be somewhat longer
than what would otherwise be considered practical. In the bottom right corner you can also see
a potentiometer, this is used for setting the correct voltage for the internal oscillator, adjusting it
would result in a different output frequency.

In Fig. 5.7 the step-down circuit can be seen, working as intended and resulting in a much lower
temperature in the 5 V regulator. The other regulator however, gets quite hot when in use, hence
the necessity of a fan and perforated case.

31

5.1 The Angstrém Small Radio Telescope Results

Figure 5.4: 1. LNA and 2. Bias-Tee, mounted on the dipoles.

P 1e8080 ...

Frequency 1360MHz. RF+0G (12

Figure 5.5: The front of the receiver case. 1. Channel 1, 2. Channel 2, 3. External Oscillator
input, 4. Ethernet output.

32

Results

5.1 The Angstrém Small Radio Telescope

‘9]Q1520 20U 81 pUD ‘pUd budwns oY) YIvaULIPUN PaIDd §1 LOIDIJIISO DULIUL Y], S409DINbY O] ‘fddng uomog ‘¢ ‘pavd buydwng g ‘99 -svig
L enmds g STy G ‘saaqnf ZHN 09 T ‘seny ZHW 0071 & “weyndwy O g 4eyfydwn YNT T 9509 42012094 9Y) fo apisur Y[, 9°G 4nb]

)
1| i

33

5.2 The signal from outer space. Results

Figure 5.7: A close up of the step down circuit.

5.2 The signal from outer space.

The concluding test was to analyze the sampled signal and see how strong the signal was. We
used a signal generator as the local oscillator and set it to the prescribed 1360 MHz. We also used
the Sensor GUIT [28] program which is a light analysis program made for the same sampling card
type as ours. It can among other information, show a spectrum of the received signal, see Fig. 5.8.
As one can see we have two signals, red and green, the green is a little weaker than the other.
After exchanging cables and components back and forth it was concluded that the weaker signal
was not an effect of the equipment, simply that one polarization was weaker than the other.

34

Results

5.2 The signal from outer space.

TI08 ‘TT fivpy wo 90 : €190 09 1H ‘o091 2V fo u0122.41p 21y) Ut udyv) S1 DIVP YT, “[PIAIQ Y] UOLf
U226 pup 2j0dip IU0ZLLOY Y} WLl S1 paL ‘yam fida pagaadza sv su publs Y[LYSY oY1 fiq paararas auy wio [g oY) fo winagoads oy, :g°¢ anbug

ZH
00'+E5LE00T 00"00F0000T 00'STEEDEE

Q-

ur ussfolphy aul

ap

35

Chapter 6

Conclusions

The project has been filled with interesting challenges, and has touched upon more or less all
kinds of electronics that one could come in contact with: analog electronics for power supply,
regulators and step-down circuits; digital electronics in programming the PIC controller and the
synthesizer; high frequency electronics for the entire system; and graphical interface and hardware-
near programming for the controller. As the project progressed it become evident that not all of
the goals set up in the beginning would be accomplished. Some parts where left to be implemented
at a later stage, such as: combining the controller software with a program to store data onto a
hard drive, and making drift-scans. This was a direct result of the complexity of the project, each
part took more time than was originally estimated, and the unfortunate problems with the local
oscillator delayed it even more. All in all, the project extended 3 months over time, and it would
probably have taken another few months if the skipped parts would have been implemented in
this project.

6.1 Possible Improvements

The telescope is not a perfect machine and there are of course improvements to be made. While
these have been considered during the project they have not been implemented, a few because of
time constraints while others require more or less a complete reconstruction of parts of the system.

e Calibration - One thing that should be considered is that the telescope should have a thermal
diode mounted on the dish to be used for calibrating the system.

e Hall elements - A big concern is the fact that the telescope only can move in one degree
increments, this is because there is a mechanical counter keeping track of how long the motor
have moved. There are about twelve teeth counts on that gear for each degree of the dish,
the fact that it is not an exactly known number of teeth makes it impossible to have a
more exact movement of the dish. There is also the risk of the counter jumping one tooth
for some reason since it is mechanical. To improve on this one could use another form of
counting mechanism, e.g. Hall elements, small magnets distributed evenly along the gear
and a detector which register each time a magnet crosses in front of it, the more magnets the
higher the accuracy of movement. This must be made in conjunction with rewriting parts
of the controller-box firmware to enable it to receive commands in decimal form.

e Instant sampling - As mentioned before there are possibilities to sample frequencies as high
as the hydrogen line without the help of analogue mixing stages. This would mean large
parts of the receiver system could be exchanged for a card with those capabilities, but they
are as stated very expensive.

36

6.1 Possible Improvements Conclusions

e Step-Down to 12 V - The step-down circuit for the 5 V regulator was very successful and
resulted in much less heating. The same could or perhaps should be done for the 12 V
regulator as well. This would decrease the heat in the case and make other components
work better in the lowered temperature.

e The oscillator - An unfinished part is of course the local oscillator for the mixer. The current
implementation works for now, but should be changed for a more permanent solution. It is
probably recommended to scrap the previous attempts and start from scratch with a new
one. Another possibility is to run either an external or the internal source. This is possible as
is, but only after tedious removal of components to gain access to the oscillator. A solution
would be to connect a splitter before the LO amplifier and connect both sources to it, and
mount a power switch on the front to turn the internal oscillator on or off.

e The GUI - After the GUI was complete there has become evident that a few functions
would make the use of the program a little easier. This would first be an option to choose
which of the scanning patterns should be used, by a simple radio button, and secondly an
option to turn off the required scanning and tracking time limiter. There are also extensions
possible for the program which would increase the versatility of the program. Mostly it is
in the ability to track different objects, planets, and satellites. NORAD has for example
information on movement of most satellites in a so called two-line element set (TLE) [29],
a text format for easy use. Planets have their orbits well documented and algorithms for
tracking their movement should not be hard to find.

37

Appendix A

List of Components

This list is comprised of the RF components used for this project, this includes cables and adapters.

Each product has its most important properties listed, as specified by the manufacturer.

A.1 RF Circuits

Table A.1: Low Noise Amplifiers

Manufacturer

Model

Amount

Frequency

Radio Astronomy Supplies [30]
Mini-Circuits [31]
Mini-Circuits

LNA 1420

2

ZFL-2500VH+ 2

7X60-3011+

1

1420 MHz
(10-2500) MHz
(400-3000) MHz

Gain Noise Figure Bias Voltage Max. Current

28 dB 0.35 dB T(12-15) V. 100 mA

20 dB 5.5 dB +(12-15) V 300 mA

13.5 dB 1.5 dB +12 'V 120 mA

Table A.2: Filters

Manufacturer Model Amount Frequency Insertion Loss
Mini-Circuits ~ SBP-60-+ 2 (55-67) MHz 1.14 dB
Mini-Circuits VBFZ-1400+ 2 (1350-1450) MHz 1.97 dB

Manufacturer

Model

Table A.3: Mixer

Amount Frequency

Conversion Loss

Mini-Circuits

ZFM-15+

2 (10-3000) Mz

Table A.4: Oscillator € Synthesizer

7 dB

Manufacturer Model Amount Frequency
Mini-Circuits 7X95-1420+ 1 (1230-1420) MHz
Mini-Circuits DSN-250A-119+ 1 (1130-2100) MHz

Power Output

Bias Voltage

Max. Current

Tuning Voltage

+6 dBm
+0.5 dBm

5V

VCO +5 V PLL +24 V

35 mA
VCO 31 mA PLL 27 mA

38

+(0-16) V

A.2 Cables & Adapters List of Components

Table A.5: Splitter

Manufacturer ~ Model Amount Frequency Insertion Loss Max. Power Input
Mini-Circuits ~ ZAPD-1750-S+ 1 (950-1750) MHz 3.2 dB 10 W

Table A.6: Bias-Tee

Manufacturer Model Amount Frequency
Mini-Circuits ZNBT-60-1W++ 2 (2.5-6000) MHz

Conversion Loss Max. Voltage Input Max. Current Input
0.6 dB 30V 500 mA

A.2 Cables & Adapters

Table A.7: Cable

Manufacturer Model Amount Frequency
SSB-Electronic [24] Aircom Plus 25 m (0-10) GHz
Hangzhou Hongsen Cable Co. [25] RG402U 0.5 m (0-20) GHz
Impedance Attenuation at 1500 MHz Shielding Dielectric

50 2 17 dB/100m Copper foil and braid Semi airspaced
50 0.5 dB/1m Seamless Copper Tube PTFE

Table A.8: Adapters

Model Connector Amount
Straight SMA-SMA Plug-Plug 4
Right Angled SMA-SMA Plug-Jack 2
RG402-(Case N) Cable-Jack 1
RG58-(Case BNC) Cable-Jack 1
Straight N-SMA Jack-Plug 1
Straight SMA-SMA Jack-Jack 1

39

Appendix B

Source Code - PIC microcontroller

B.1 PLL _ prog.asm

7?7??????7????7??7?7????????????))))777777777777777777777777777777
5 PLL setup program for local oscillator in the Angstrom Small Radio
Telescope Receiver

; Author: Henrik Lindén Last changed: 2011—04—07

H Send data sequences to the PLL to set frequency to lock on.
H Data recepition is enabled at power on in PLL.
; Uses "Initialization Latch Method" for ADF4118 chip programming

I I I P I I I I P I I IR NP I R I AT I AP R AP AP I AN AP AP I AT I AP AP P AP AP AT AP P IS A AT A AT AP P AT NP A AP P AP A AT AP AP AP R R

INCLUDE "pl6f84a.inc"

sxkkkk Register Shortcutssxsx

STATUS equ 03h ; Address of STATUS register

TRISA equ 85h ;Address of TRISA register for Port A
PORTA equ 05h ;Address of Port A

s#s5kk Define Bit Shortcutxxxxx

#DEFINE Data PORTA,0 ;Set "Data" as shortcut to the Bit controlling RAO

#DEFINE Clock PORTA,1
#DEFINE LatchEnabled PORTA,2
#DEFINE Toggle PORTA, 3

PAGE
__CONFIG CP OFF & XT OSC & PWRIE ON & WDT OFF

;s kkokokk MacTos sk skk
ClockStrobe MACRO ;Toggle Clock to detect "Data" Bit
call Dlayb ;delay to give zenerdiod time to
react if wvoltage 1is high
bsf Clock
call Dlayb
bcf Clock
ENDM

LatchStrobe MACRO ; Toggle LatchFEanbled to load 24bit sequence
into memory on oscillator
call Dlay5
bsf LatchEnabled
call Dlay5
bef LatchEnabled
ENDM

40

44
45
46
47
48

50
51
52
53
54
55

57
58
59

B.1 PLL prog.asm

Source Code - PIC microcontroller

sakxkx Allocate Datakxskxx
CBLOCK 0Ch

bitNr

REG

Dlay

JREkKKK KKK

ORG 0

sxkxkx Setup Portssskssksx
bsf STATUS,5
movlw b’00000°

others also to outputmode)
movw{ TRISA

register to set outputmode
bef STATUS,5

sxkxkx MAIN Programs s
START:

bef LatchEnabled

bef Clock
bef Data

movlw b’00000011"°

call Setbyte

movlw b’10000000’

call Setbyte

movlw b’10010011°

call Setbyte

LatchStrobe

N movlw b’00000011°

H call Setbyte

; movlw b’10000000°

; call Setbyte

H movlw b’10010010’

H call Setbyte

; LatchStrobe

movlw b’00000000’

call Setbyte

movlw b’00000000’

call Setbyte

movlw b’00010100"’

call Setbyte

LatchStrobe

movlw b’00000000’

call Setbyte

movlw b’00010001°

call Setbyte

; Switch to Bank 1
;Set RAO, RA1 and RA2 to outputmode (and

;s Move wvalue from w to TRISA

; Switch to Bank 0

; Register Sequence L, LSB 11

;Load sequence

;Register Sequence F, LSB 10

;Load sequence

; Register Sequence R, LSB 00

;Load sequence

; Register Sequence N, LSB 01

41

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

B.1 PLL prog.asm

Source Code - PIC microcontroller

movlw b’00000001 "’
call Setbyte

LatchStrobe

bef LatchEnabled
bef Clock
bef Data

Endlessloop:
;elrwdt
;bsf Toggle
;bef Toggle
goto Endlessloop

sxkxkx Subroutinesskxkx
Setbyte:
clrwdt
movwf REG
movlw 8
send ,
movwf bitNr
Sendreg:
rlf REG,1
bef Data
r1f PORTA,1
ClockStrobe
decfsz bitNr,1
goto Sendreg

Return

s#xkkx New Sub

;Load sequence

;Loop Forever when Done

; Number of bits in each register to

loop that many times

; Rotate and put bit
; Clear the Data bit
; Shift the Carry into the Data bit
;Send bit
; Check if all bits in byte have been sent
;Repeat to send mext bit

into the Carry

Dlay5: ; Delay 5 msecs
movlw 4 ; Set up the Delay
movwf Dlay
movlw 256 — Ox0ES8
addlw 1
btfsc STATUS,?2
decfsz Dlay
goto $-3

Return

;L b’00000011° b’10000000° b’10010011°

s F b’00000011° b’10000000° b’10010010°

;R b’00000000° b’00000000° b’00010100°

;N b’00000000° b’00010001° b’00000001°

skkxxxEnd of programsssksxx
end

42

© 00O U W -

0~ Uk WN

Appendix C

Source Code - GUI Controller

C.1 main.cpp

/**

| Angstrém Synthetic Radio Telescope (ASRT) — Dish Controller GUI/
/

| Author: Henrik Lindén /
| Last Changes: 2010—11-03 /
ok KoK ok KR R KK R KK R KR R R KK R KRR R KR R KR R KR ok KR R KR R KR R KR R KRk o/

#include <QtGui/QApplication>
#include "dishwindow.h"

int main(int argc, char xargv|])

{

QApplication a(argc, argv);
DishWindow w;
w.show () ;

return a.exec();

C.2 dishwindow.h

#ifndef DISHWINDOW H
#define DISHWINDOW H

#include <QMainWindow>

#include <QMessageBox>

#include <QTcpSocket>

#include <QCloseEvent>

namespace Ui {
class DishWindow;

}

class DishWindow : public QMainWindow
Q_OBJECT

protected:
void closeEvent (QCloseEvent xevent);

43

Tk W N

C.3 dishwindow.cpp

Source Code - GUI Controller

public:
explicit DishWindow (QWidget *parent
“DishWindow () ;

slots:
scan () ;
stop () ;
reset ();
calcTrack
calcScan (
yesToScan
about () ;
help () ;

version () ;

private
void
void
void
void
void
bool
void
void
void

)

)

0
)
0O

void checkDisconnect () ;
int checkConnection () ;
void checkMode () ;

void sendPosition ();

void
void
void
void
void
void
void
void
void
void

errorCon_0();

errorCon_1();
readReturnMsg 0() ;
readReturnMsg 1() ;
msgConnected 0() ;
msgConnected 1();
connectionClosedByServer 0();
connectionClosedByServer 1();
shift coord () ;
writeDefaultINI () ;

private:
Ui :: DishWindow x*ui;

QTcpSocket tcpSocket [2];
connect to both Dishes at once

void closeConnection () ;

void savelog (QString logMsg);

void connectToServer (QString ipAdress
void msgConnected (int i);

void errorCon (int i);

void readReturnMsg(int i);

void connectionClosedByServer (int 1i);
bool notConnected () ;

bool stopcloseMsg() ;

void sendCommand(QString command) ;
bool noRuntime () ;

void azelToRAdec(float horizontal],
void RAdecToazel(float equatorial[],

int checkCoord () ;

void convertTofloat (QString coord|[],
float LST();

void readINI();

s
#endif // DISHWINDOW H

0);

//create several sockets in array to be able to

, unsigned short port, int

i);

float equatorial[]);
float horizontal []) ;

float equatorial []) ;

C.3 dishwindow.cpp

#include
#include
#include
#include
#include

<QtNetwork>
<QString>
<QTextCursor>
<QDateTime>
<QFile>

44

31

32
33
34
35

36

60

62
63
64
65

C.3 dishwindow.cpp Source Code - GUI Controller

#include <QCoreApplication>
#include <QTextStream>
#include <QIntValidator>
#include <QtCore/qmath.h>
#include <QDesktopServices>
#include <QColor>

#include <QSettings>

#include "dishwindow.h"
#include "ui_ dishwindow.h"
#include "helpbrowser.h"

bool scanning = false; //global wvariables to set if a scan i running
bool nextScan = false;
bool tracking = false;

DishWindow : : DishWindow (QWidget *parent)
QMainWindow (parent) ,
ui(new Ui:: DishWindow)

{
ui—>setupUi(this);
//when a SIGNAL from the respective function is emitted then the function in
SLOT is called
connect(&tcpSocket [0] , SIGNAL(connected()), this, SLOT(msgConnected 0()));
connect(&tcpSocket [0] , SIGNAL(disconnected ()), this, SLOT(
connectionClosedByServer 0()));
connect(&tcpSocket [0] , SIGNAL(error (QAbstractSocket :: SocketError)), this, SLOT(
errorCon_0()));
connect(&tcpSocket [0] , SIGNAL(readyRead()), this, SLOT(readReturnMsg 0()));
connect(&tcpSocket [1], SIGNAL(connected()), this, SLOT(msgConnected 1()));
connect(&tcpSocket [1], SIGNAL(disconnected ()), this, SLOT(
connectionClosedByServer 1()));
connect(&tcpSocket [1], SIGNAL(error (QAbstractSocket :: SocketError)), this, SLOT(
errorCon_1()));
connect(&tcpSocket [1], SIGNAL(readyRead()), this, SLOT(readReturnMsg 1()));
connect (ui—>setfixButton , SIGNAL(clicked ()), this, SLOT(sendPosition()));
//limit which numbers can be written into the "Fiz Position" bozes
QValidator xazValidator = new QIntValidator (0, 359, this);
QValidator xelValidator = new QIntValidator (0, 90, this);
ui—azEdit—>setValidator (azValidator);
ui—>elEdit —>setValidator (elValidator);
connect (ui—>degreesRadioButton , SIGNAL(clicked ()), this, SLOT(shift coord()));
connect (ui—>coordRadioButton, SIGNAL(clicked ()), this, SLOT(shift coord()));
readINI(); //read the ini file and set the wvalues
}
DishWindow :: ~ DishWindow ()
{
delete ui;
}

/oot ok ok K R K o o ok ok ok ok ok ok ok ok oK oK KKK KKK KKK K K K R R K o o ok ok ok ok ok oK oK oK oK oK ok oK
/*functions in SLOT can’t carry wvariables with them to other functions, to work
around this
these functions just forwards the correct value based on how we are connectedx/
void DishWindow:: errorCon_0(){
errorCon (0) ;}
void DishWindow :: errorCon_1(){
errorCon (1) ;}
void DishWindow :: readReturnMsg 0 () {
readReturnMsg (0) ; }

45

107

108
109

110

111
112
113
114
115
116

117
118
119
120
121
122
123
124
125
126

C.3 dishwindow.cpp Source Code - GUI Controller

void DishWindow :: readReturnMsg 1 (){
readReturnMsg (1) ;}

void DishWindow :: msgConnected 0 () {
msgConnected (0) ;}

void DishWindow :: msgConnected 1(){
msgConnected (1) ;}

void DishWindow :: connectionClosedByServer 0 () {
connectionClosedByServer (0) ;

void DishWindow :: connectionClosedByServer 1(){
connectionClosedByServer (1) ;

void DishWindow :: shift coord () //Enable and disable coordinate format bozes so the
values in them do not change during execution

if (ui—>degreesRadioButton—>isChecked ())

{
ui—>rightEdit —>setEnabled (false);
ui—>decEdit—>setEnabled (false);
ui—>azEdit—>setEnabled (true);
ui—>elEdit —>setEnabled (true);
}
else if(ui—>coordRadioButton—>isChecked())
{
ui—>rightEdit —>setEnabled (true);
ui—>decEdit—>setEnabled (true);
ui—>azEdit—>setEnabled (false);
ui—>elEdit —>setEnabled (false);
}
}
//Connecting . ..

void DishWindow :: checkMode () //Check mode and connect to correct dish
{

savelog ("Checking_mode...");

//Check which mode is chosen
if (ui—D8RadioButton—>isChecked ()) //if dish 8 chosen, connect
connectToServer (ui—>ip8LineEdit—>text () ,ui—>port8LineEdit—>text () .toUShort (
0,10),0);
else if(ui—>D7RadioButton—>isChecked ()) //if dish 7 chosen, connect
connectToServer (ui—>ip7LineEdit—>text () ,ui—>port7LineEdit—>text () .toUShort (

0,10) ,1);
else if(ui—interRadioButton—>isChecked()) //if interferometry chosen, connect to
both
{
connectToServer (ui—>ip8LineEdit—>text () ,ui—>port8LineEdit —>text () .toUShort (
0,10),0);
connectToServer (ui—ip7LineEdit—>text () ,ui—>port7LineEdit—>text () .toUShort (
0,10) ,1);

else //if mo mode
savelog ("No_mode_chosen ,_choose_mode!") ;
}

void DishWindow :: connectToServer (QString ipAdress, unsigned short port, int i) //
connect to specified dish

tcpSocket [i]. connectToHost (ipAdress, port); //QHostAddress::LocalHost or IP
ui—>connectButton—>setEnabled (false);

ui—>disconnectButton—>setEnabled (true);

ui—>D7RadioButton—>setEnabled (false) ;

ui—>D8RadioButton—>setEnabled (false);

ui—>interRadioButton—>setEnabled (false) ;

savelog ("Connecting_to_dish...");

46

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

191

C.3 dishwindow.cpp Source Code - GUI Controller

void DishWindow :: msgConnected (int i) //show connection message

{

if (i==0)

savelog (" Connected_to_Dish_8!");
else if(i==1)

savelog (" Connected_to_Dish_7!");

}

//Disconnecting ...
void DishWindow :: checkDisconnect () //send disconnection message and disconnect
{
if (stopcloseMsg ()){ //ask if we want to disconnect
savelog ("Disconnecting ... ");
closeConnection () ;

}

void DishWindow :: closeConnection () //close connection to current dish

stop(); //send stop command before closing connection
if (ui—D8RadioButton—>isChecked ()) //if dish 8 chosen, disconnect...

tcpSocket [0]. disconnectFromHost () ;
savelog ("Disconnected_from _D8!");
}
else if (ui—>D7RadioButton—>isChecked ()) //if dish 7 chosen, disconnect...
{
tcpSocket [1]. disconnectFromHost () ;
savelog ("Disconnected_from _D7!");

else if (ui—interRadioButton—>isChecked()) //if interferometry chosen, disconnect
from both
{
tecpSocket [0]. disconnectFromHost () ;
savelog ("Disconnected _from_D8!");
tcpSocket [1]. disconnectFromHost () ;
savelog ("Disconnected _from _D7!");
}

ui—>connectButton—>setEnabled (true);
ui—>disconnectButton—>setEnabled (false);
ui—DT7RadioButton—>setEnabled (true);
ui—>D8RadioButton—>setEnabled (true) ;
ui—interRadioButton—>setEnabled (true);

}

//Possible Errors
void DishWindow :: connectionClosedByServer (int i) //display error if connection lost

{

if (i==0)

savelog ("Error:_Connection_closed _by_Dish_8!");
else if(i==1)

savelog ("Error:_Connection_closed_by_Dish_7!");
else

savelog ("Error:_Connection_closed _by_Dish!");
//closeConnection () ;
}

void DishWindow:: errorCon (int i) //display network error and close connection

savelog (tcpSocket[i]. errorString());
closeConnection () ;

}

int DishWindow :: checkConnection () //check which connections are used and return
corresponding integer
{

47

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

225
226
227
228
229
230

231
232
233

234
235
236
237
238
239
240

241
242
243
244
245
246
247
248
249
250
251
252
253

C.3 dishwindow.cpp

}

int a=tcpSocket [0].state ()
int b=tcpSocket[1].state ()
if ((a==3) & (b==0))

//savelog ("0");

return 0;

)
i

else if ((b==3) & (a==0))

//savelog ("1");

return 1;
else if ((a==3) & (b==3))

//savelog ("2");

return 2;

}
else
{
//savelog ("3");
notConnected () ;
if (scanning)
scanning = false;
return 3;
}

void DishWindow :: readReturnMsg (int i) //read and display messages from controller

{

float AZEL|2] ,RADEC|2];

AZEL[0] = —1;
while (tcpSocket [i].canReadLine ()) //read as long as there are new messages to
read
{
QString text;
text = tcpSocket|[i].readLine();
savelog ("Return_msg:_" + text);
if (text.contains ("Azimuth", Qt:: CaseSensitive)) //print current
position to lables
{
ui—>azposLabel—>setText (text);
QStringList RADecpos = text.split ("=", QString:: SkipEmptyParts); //
extract the numberpart of the position
AZEL [0]= RADecpos|1]. toFloat ();
else if(text.contains("Elevation", Qt:: CaseSensitive))
{
ui—>elposLabel —>setText (text);
QStringList RADecpos = text.split ("=", QString:: SkipEmptyParts); //
extract the numberpart of the position
AZEL [1]= RADecpos|1].toFloat () ;
if (scanning)
nextScan=true;
else if(tracking)
nextScan=true;
}
//this code should be removed when endstop bug is remowved
else if(text.contains("End_stop!", Qt:: CaseSensitive))
nextScan=true;
}

if (AZEL[0] >0) //convert the coordinates sent from the controller as AZEL and
print them as RADEC on labels

48

Source Code - GUI Controller

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

312
313
314
315
316

317

C.3 dishwindow.cpp Source Code - GUI Controller

}

QString coord [2];
azelToRAdec (AZEL,RADEC) ; //converting to RADEC

int hh = int (RADEC[0]|/15); //split up right ascension to the correct format
int mm = int ((RADEC[0]/15 — hh)*60);
float ss = ((RADEC|[0]/15 — hh)*60 — mm)*60;

QString RAhour, RAminute, RAsecond;

RAhour.setNum (hh); //number to string conversion
RAminute . setNum (mm) ;

RAsecond.setNum(ss) ;

float dec = RADEC|1]; //split up declination to the correct format
int deg = int(dec);

mm = int ((dec — deg)*60);

ss = ((dec — deg)*60 — mm) *60;

QString Ddeg, Dminute , Dsecond ;

Ddeg.setNum (deg); //number to string conversion
Dminute . setNum (mm) ;

Dsecond .setNum (ss) ;

coord [0] = RAhour + ":" 4+ RAminute + ":" + RAsecond;

coord [1] = Ddeg + ":" 4+ Dminute + ":" 4 Dsecond;

ui—>raposLabel—>setText ("Right_Ascension_=_" + coord [0] + "\n"); //print to
labels

ui—>decposLabel—>setText ("Declination_=_" + coord[1] + "\n");

void DishWindow :: sendPosition () //send new position to controller

{

int

coord = checkCoord () ;

if (coord==0) //Absolute degrees

}

else

{

QString position;
position = "Az," + ui—azEdit—text () + ";" + "El," 4+ ui—elEdit—>text ();
sendCommand (position);

if (coord==1) //FEquatorial coordinates

float horizontal [2], equatorial [2];
QString coordinates [2];

coordinates [0] = ui—>rightEdit—>text ();
coordinates [1] = ui—>decEdit—>text () ;

convertTofloat (coordinates , equatorial);
RAdecToazel (equatorial , horizontal);

QString position ,AZ,EL;

AZ.setNum (qRound (horizontal [0]));
EL.setNum (qRound (horizontal [1]));

position = "Az," + AZ + ";" + "El," + EL;
savelog ("Calulated_position" + position);

if (horizontal[l]>=0) //check if the elevation is below zero, meaning the
object 1s below the horizon, and if not send the command
{

}

else
savelog ("The_object_is_currently _below_the_horizon_and_can_not_be_
targeted!");

sendCommand (position); //send new position

49

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

333

334
335
336
337
338
339

340
341

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

357
358
359
360
361
362

363
364
365
366

367
368
369
370
371
372
373

374
375

C.3 dishwindow.cpp Source Code - GUI Controller

}

void DishWindow::scan () //start scanning the hemisphere

if (checkConnection ()==3) //check for connection before running scan
return;
if (yesToScan()) //check if we want to run the scan

//Get scan duration from spinbox

QString t;

int q=0;

t = ui—>runtimeEdit—>sectionText (QDateTimeEdit:: HourSection); //get # of hours as
text

q += 3600xt.toInt (); //convert text—

hours to int as seconds
t = ui—>runtimeEdit—>sectionText (QDateTimeEdit:: MinuteSection) ;
q += 60*t.tolnt ();
t = ui—>runtimeEdit—>sectionText (QDateTimeEdit:: SecondSection) ;
q += t.tolnt ();

int total scan time = q; //total duration in seconds that tha scan will be run
(86400 = one whole day)

if (total scan time ==0) //make sure a runtime is set adn display dialog and
logmessage if mnot
{

noRuntime () ;
return;

}

ui—>resetButton—>setEnabled (false);
ui—>setfixButton —>setEnabled (false);
ui—>scanButton—>setEnabled (false);
savelog ("Scanning ... ");

savelog ("Duration_of_scan_is_" + QString::number(total scan time) + "_seconds.");

QFile posFile("conf/default.pos"); //open position file
if (!posFile.open(QIODevice:: ReadOnly | QIODevice:: Text)) //check if it is
open
return;
QTextStream getPos(&posFile); //create stream of text from file

QString line;

//line = getPos.readLine(); //read first line which contains number of
sweeps to run

//int sweeps = line.tolnt(); //make the first string line into an integer

//savelog (line + " sweeps per hour");

line = getPos.readLine(); //read second line which contains time between
movements
int count down = line.tolnt(); //make the second string line into an integer

savelog(line + "_seconds_between_each_new_positon_in_scan_pattern");
posFile.close ();

ui—>progressBar—>setEnabled (true);

QTime progressTime; //create a timer for how long the scann has ben runnning

ui—>progressBar—>setRange (0, total scan time); //set the range of the
progressbar based on how long the scan will be running

QTime scanTime = QTime:: currentTime () .addSecs(total scan time); //wait for
the amount of seconds specified in the file before allowing next sweep

50

376
377

378
379

380
381

382
383
384
385

386
387
388
389
390
391

392

393
394

395
396
397
398

399
400
401
402
403
404

405

406

407

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

C.3 dishwindow.cpp Source Code - GUI Controller

to be run

progressTime.start (); //start calculating the elapsed time for display in
the progressbar

while((QTime:: currentTime () < scanTime) && scanning) //while waiting and
the scanning has mnot been stopped...

//int a=1; //counter to increment every time a sweep has been run upto the
correct amounts of sweeps has been run
//while (scanning €€ (QTime:: currentTime () < scanTime))
at
QFile posFile("conf/default.pos"); //open position file
if (!posFile.open(QIODevice:: ReadOnly | QIODevice:: Text)) //check
if it is open
return;

QTextStream getPos(&posFile);
QString line;

//line = getPos.readLine(); //can’t move directly to third line
to get command, ...
line = getPos.readLine(); //...s0 must read the first two lines

before reading the first position

while (!getPos.atEnd() && scanning && (QTime::currentTime () < scanTime)
) //run as long as you have not reached the end of the file
and while scanning varible is still true and scanning duration has
not ended

if (nextScan) //run if the previous command have been ezecuted

line = getPos.readLine(); //get the next position from the
file
sendCommand (line) ; //send position command for scan

savelog ("Moving_to:_" + line); //log current position
nextScan=false ;

}

ui—>progressBar—>setValue (progressTime.elapsed () /1000); //set
progressbar to elapsed time since scan begun

QTime waitTime = QTime:: currentTime () .addSecs(count down); //wait
for the amount of seconds specified in the file before allowing
next position to be run

while ((QTime:: currentTime () < waitTime) && scanning){ //while
waiting and the scanning has mnot been stopped...

QCoreApplication:: processEvents (QEventLoop:: AllEvents);} //...
check if other commands want to run

}
/) a++;

posFile. close (); //close the position file

//}
}

if (posFile.open(QIODevice:: ReadOnly | QIODevice:: Text))
posFile.close (); //close the position file

if (scanning) //if still scanning then the scan has been completed

savelog ("Scan_Completed!");
scanning = false; //mark that scanning is not running

else if (!scanning)
savelog ("Scan_Interrupted!");

ui—>progressBar—>reset () ;

o1

427
428
429
430
431
432
433
434
435
436

437
438

439

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

C.3 dishwindow.cpp Source Code - GUI Controller

ui—>progressBar —>setEnabled (false);
ui—>resetButton—>setEnabled (true);
ui—>setfixButton —>setEnabled (true);
ui—>scanButton—>setEnabled (true);

}
}
void DishWindow :: sendCommand (QString command) //send command to the correct dish
{
if (command. contains ("Az,", Qt:: CaseSensitive)) //check if azimuth is set to 360
degrees and change to 0 if it is
{
QStringList newCom = command. split (";", QString:: SkipEmptyParts); //split
the command into parts so that the degrees of...
QStringList newPos = newCom|[O0]. split (",", QString:: SkipEmptyParts);//...
azimuth can be evaluated
if (newPos[1]=="360")
{
command = "Az,0;" + newCom|[1];
savelog ("Azimuth_360_was_changed_to_0!");
}
}
int i = checkConnection () ;
if (i = 0) //if connected to dish 8
QTextStream stream 0(&tcpSocket[0]) ;
stream 0 << command <<"\n";
}
else if (i = 1) //if connected to dish 7
{
QTextStream stream 1(&tcpSocket[1]);
stream_1 << command <<"\n";
}
else if (i = 2) //if connected to both dishes
{
QTextStream stream 0(&tcpSocket[0]);
stream_0 << command <<"\n";
QTextStream stream 1(&tcpSocket[1]);
stream_1 << command <<"\n";
}
else if (i = 3)
{
savelog ("Command_could_not_be_sent!");
}
}

void DishWindow ::stop () //Stops the dish from completing its move action

{

sendCommand ("stop") ;
if (scanning)

scanning = false;
else if(tracking)
tracking = false;
}
void DishWindow:: reset () //reset dish to default position
{
sendCommand ("reset") ;
}
void DishWindow:: version () //check wversion of controllerchip firmware
{
sendCommand ("ver") ;
}

52

491
492

493
494

495

496
497
498

499

500
501
502
503
504
505
506

507
508
509

510
511

512

513

514
515
516
517

518
519
520
521
522
523
524
525
526

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

C.3 dishwindow.cpp Source Code - GUI Controller

void DishWindow :: calcScan () /xcalculate scan of the hemisphere (could include
depending on start azimuth position), save to file which can be read from
during scanx/

QString path = HelpBrowser:: directoryOf("conf").absolutePath(); //get path of
ini file

QSettings settings (path + "/config.ini", QSettings::IniFormat); //read settings
from .ini file

float timeunit = 3600; //I=hours, 60=minutes, 3600=seconds etc.

float earth rotspeed = (float)360/(24*timeunit); //in degrees per "timeunit”
86164

float beam width = settings.value("settings/beam width", 7.0).toFloat(); //beam
width in degrees (see specifications for dish)

//float maz_dish _movement = 180/195; //in degrees per second (70.92)

//formula to calculate which positions to move to during the scan

J//float =z = float (qPow(timeunit,2));

//float y = 360xbeam_width;

//float time per degree = (zxearth rotspeed)/y;

//float ideal dish _movement = (float)180/time_per_ degree; //how many degrees
the dish should move per timeunit

QString azPos = "0"; //ui—>azEdit—>text (); //starting azimut position
int move degrees = (int)beam width; //qRound(ideal dish movement); //how many
degrees between each position in a sweep

int number of positions = qRound(180/move degrees); //Number of positions the
dish has to move to during one sweep

int number of sweeps = qRound(earth rotspeed*3600/beam width); //number of
sweeps needed to cover one hour of earth rotation

int time between move = gRound(3600/(number of positionssnumber of sweeps)); //
how much idle time needed between mowving to next position

/*open and save scan positions to list to filex/

QFile posFile("conf/default.pos");

if (!posFile.open(QIODevice:: WriteOnly | QIODevice:: Text)) //check if file is
open
return;

QTextStream position(&posFile);
//position << number_of sweeps << "|n'";
//posFile.close();

posFile.open(QIODevice:: Append | QIODevice:: Text); //check if file is open

position << time_between_move << "\n";

position << "reset" << "\n"; //set reset as the first position to make sure
that no calculation errors during movement are left

int el=0;
for (int elPos=move_degrees;elPos <=180;elPos=elPos+move_degrees)

{

position << "Az," << azPos << ";" << "El," << elPos << "\n";
el=elPos;

}
if (el!=180)

position << "Az," << azPos << ";El,180\n";
else if(el==180)

el — move degrees;

for (int elPos=el;elPos >0;elPos=elPos—move degrees)

{
}

posFile.close ();

position << "Az," << azPos << ";" << "El," << elPos << "\n";

93

545
546

547
548
549
550
551
552
553
554
555

556

557
558
559
560
561
562

563
564

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

C.3 dishwindow.cpp Source Code - GUI Controller

void DishWindow :: calcTrack () //start tracking the specified point based upon the

{

coordinate type choosen

if (checkConnection ()==3) //check for connection before running tracking
return;

int coord = checkCoord(); //check which coordinate system is used

QString t;

int q=0;

t = ui—>tracktimeEdit—>sectionText (QDateTimeEdit:: HourSection); //get # of
hours as text

q += 3600xt.tolInt (); //convert text—
hours to int as seconds

t = ui—>tracktimeEdit—>sectionText (QDateTimeEdit:: MinuteSection);

q += 60xt.tolnt ();

t = ui—>tracktimeEdit—>sectionText (QDateTimeEdit:: SecondSection) ;

q += t.tolnt ();

int total tracking time = q; //total duration in seconds that tha scan will be
run (86400 = one whole day)

if (total tracking time = 0) //make sure a runtime is set and display dialog
and logmessage if not

{
noRuntime () ;
return;

}

ui—>degreesRadioButton—>setEnabled (false) ;
ui—>coordRadioButton—>setEnabled (false);
ui—>trackButton—>setEnabled (false);
ui—>resetButton—>setEnabled (false);
ui—>setfixButton—>setEnabled (false);
ui—>scanButton—>setEnabled (false);

savelog ("Tracking ... ");

float horizontal[2], equatorial [2];
tracking = true;

nextScan = true;

savelog ("Duration_of_tracking_is_" + QString::number(total tracking time) + "_
seconds.");

if (coord==0) //Horizontal coordinates degrees

//Get Az/El from wuser
QString coordinates [2];

coordinates [0] = ui—azEdit—>text ();
coordinates [1] = ui—elEdit—>text ();
horizontal [0] = coordinates [0]. toFloat () ;
horizontal [1] = coordinates|[1].toFloat ()

savelog ("AZ—>RA") ;
//Convert Az/El coordinates to RA/Dec and save them in equatorial[]
azelToRAdec(horizontal , equatorial);

else if(coord==1) //FEquatorial coordinates

//Get RA/Dec from user

QString coordinates [2];

coordinates [0] = ui—>rightEdit—>text();

coordinates [1] = ui—>decEdit—text ();

//Convert text format flaots and send back as degrees saved in equatorial[]

54

606
607
608
609
610
611
612
613
614
615
616
617

618
619

620
621

622
623

624
625
626
627
628

629
630

631

632
633
634
635

636
637
638
639
640
641

642
643
644
645
646
647
648
649
650
651

652
653
654
655

656

C.3 dishwindow.cpp Source Code - GUI Controller

convertTofloat (coordinates , equatorial);

}

QString RA,DEC; //print the position in RA/Dec coordinates, in degrees
RA.setNum(equatorial [0]) ;
DEC.setNum (equatorial [1]) ;
savelog ("before_loop[deg| _RA_." + RA + "_DEC_" + DEC);

QString position ,AZ,EL, lastPosition="default";

ui—>progressBar—>setEnabled (true);

QTime progressTime; //create a timer for how long the scan has ben runnning

ui—>progressBar—>setRange (0, total tracking time); //set the range of the
progressbar based on how long the scan will be running

Time trackingTime = QTime:: currentTime ().addSecs(total tracking time); wait
g _ g_
for the amount of seconds specified in the file before allowing next sweep
to be run

progressTime.start (); //start calculating the elapsed time for display in the
progressbar

while ((QTime:: currentTime () < trackingTime) && tracking) //run while
tracking varible is still true and tracking duration has mnot ended
{

if (nextScan && tracking) //run if the previous command have been ezecuted
{
savelog ("RA—AZ") ;
//Send the RA/Dec coordinates for conversion back to Az/El, but since
som time has passed they will have changed some
RAdecToazel (equatorial , horizontal);
//convert Az/El to strings and format them accoringly so they can be
sent to the controllerchip
AZ.setNum (qRound (horizontal [0])); //horizontal [] must be rounded to
integers as the controller only can receive integer degrees
EL.setNum (qRound (horizontal [1]));
position = "Az," + AZ + ";" 4+ "El," + EL;

if ((position.contains(lastPosition, Qt:: CaseSensitive))) //check if the
new position is the same as the last one, if it is print it
{

}

else

{

savelog ("Same_position:_" 4+ position + "_=_" + lastPosition);

if (horizontal[1]>=0) //check if the elevation is below zero,
meaning the object is below the horizon, and if not send the
command

sendCommand (position); //send new position

nextScan=false ;

lastPosition=position; //save new position as last position
savelog ("Last_position_" + lastPosition);

savelog("calctrack_horizontal [deg]_" + position);

}

else
savelog ("The_object_is_currently _below_the_horizon_and_can_not_
be_tracked!\n_Tracking_will_start_as_soon_as_it_is_visible!

")
}

ui—>progressBar—>setValue (progressTime.elapsed () /1000); //set progressbar
to elapsed time since scan begun

QTime waitTime = QTime:: currentTime ().addSecs(60); //wait for the amount of
seconds specified in the file before allowing mnext position to be run

95

657

658

659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

701
702

703

704

705
706

707
708
709
710
711
712
713

714

C.3 dishwindow.cpp Source Code - GUI Controller

while((QTime:: currentTime () < waitTime) && tracking){ //while waiting
and the tracking has not been stopped...

QCoreApplication :: processEvents (QEventLoop:: AllEvents);} //...check if
other commands want to run

//Continue to send the saved RA/Dec coordinates to keep tracking the object.

if (tracking) //if still scanning then the scan has been completed

savelog ("Tracking_Completed!");
tracking = false; //mark that scanning is mot running

else if (!tracking)
savelog ("Tracking_Interrupted!");

ui—>progressBar—>reset () ;
ui—>progressBar—>setEnabled (false) ;
ui—>degreesRadioButton—>setEnabled (true) ;
ui—>coordRadioButton—>setEnabled (true);
ui—>resetButton—>setEnabled (true);
ui—>setfixButton —>setEnabled (true);
ui—>scanButton—>setEnabled (true) ;
ui—>trackButton—>setEnabled (true);
tracking = false;

nextScan = false;

}

int DishWindow :: checkCoord () //check which coordinate format is used and return the
corresponding integer

{
if (ui—>degreesRadioButton—>isChecked ())
{
return 0;
}
else if(ui—>coordRadioButton—>isChecked())
{
return 1;
}
else
return 2;
}

float DishWindow ::LST() //calculates local siderial time and returns it as float
{
const float PI = 3.14159265358979;
float dish geographical longitude = 17.648733333333332xPI1/180; //longitude of
dish 8

QDateTime time date = QDateTime:: currentDateTime () .toUTC(); //get current date
and time and convert to UIC

QString timedateString = time date.toString("yyyy ':’'M’:’d’:’h’:’'m’:’s"); //put
date and time in a string wusing using ":" to split up teh wvalues

QStringList timedateList = timedateString.split(":", QString:: SkipEmptyParts);
//make a list of the date/time value wusing ":" to separte them

float year = timedateList [0].toFloat(); //convert each element in the list to a
float for later computation

float month = timedateList [1].toFloat () ;

float day = timedateList [2].toFloat();

float hour = timedateList [3].toFloat();

float minute = timedateList [4]. toFloat();

float second = timedateList [5]. toFloat ();

float current hour = hour 4 minute/60 + second/3600; //convert current time
into fractions of hours

56

715
716
717
718
719
720

721
722
723
724
725
726
727

728
729
730
731

732
733
734
735

736
737
738
739
740
741
742

743
744

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

764
765
766
767

768
769
770
771

C.3 dishwindow.cpp Source Code - GUI Controller

int z = (month+9)/12;

int x = (7«(year + z))/4;

int y = 275xmonth/9;

float days since J2000 = 367«xyear — x + y + day — 730530 + current hour/24;

float LST = 98.9818 + 0.985647352 x days_ since J2000 +
dish geographical longitude*180/PI + 15%current hour; //compute the local
siderial time in degrees

int ¢ = (LST/360); //value of LST must be within 0—360 deggrees

float local sidereal time = LST — 360xc;

return local sidereal time;

}
void DishWindow :: azelToRAdec(float horizontal [|, float equatorial[]) //convert
Azimuth/Elevation coordinates to Right Ascension/Declination
{
QString log;
const float PI = 3.14159265358979;
float dish geographical latitude = 59.83773333333333xP1/180; //latitude of dish
8
float local sidereal time = LST();
//savelog ("LST " + log.setNum(local sidereal time)); //get the local siderial
time
float azimuth = horizontal [0]«*PI/180; //convert to flaot and radians
float elevation = horizontal [1]+*PI/180;
//savelog("az[rad] " + log.setNum(azimuth));
//savelog("el[rad] " + log.setNum(elevation));
float declination = gAsin(qSin(dish geographical latitude)*gSin(elevation) +
qCos(dish geographical latitude)*qCos(elevation)*qCos(azimuth));
//savelog ("dec[rad] " + log.setNum(declination));
float h = (qAtan2(—qgSin(azimuth)xqCos(elevation) ,(gCos(
dish geographical latitude)*qSin(elevation) — gSin(
dish geographical latitude)*qCos(elevation)*qCos(azimuth))))*180/PI;
//savelog ("h[deg] " + log.setNum(h));
float hour angle; //value of hour angle must be positive 0—360 degrees
if (h<0)
hour angle = (360+h);
else
hour angle = h;
//savelog ("hour_angle[deg] " + log.setNum(hour_ angle));
float right ascension = local sidereal time — hour angle;
equatorial [0] = right ascension;
//savelog ("right ascension[deg] " + log.setNum(equatorial [0]));
equatorial [1] = declination*180/PI;
//savelog("declination [deg] " + log.setNum(equatorial[1]));
}
void DishWindow :: RAdecToazel(float equatorial [], float horizontal[]) //convert
Right Ascension/Declination to Azimuth/Elevation coordinates
{

QString log;

const float PI = 3.14159265358979;

float dish geographical latitude = 59.83773333333333+xPI1/180; //latitude of dish
8

float local sidereal time = LST(); //get the local siderial time

//savelog ("LST " + log.setNum(local sidereal time));

57

772
773
774
775
776
T
778
779

780
781
782
783
784
785
786
787
788
789
790
791

792

793
794

795
796
797
798
799
800
801
802
803
804
805

806
807

808
809

810

811

812
813

814
815
816
817
818
819
820

C.3 dishwindow.cpp Source Code - GUI Controller

float right ascension = equatorial [0];
float declination = equatorial [1|*xPI/180; //convert to radians

//savelog ("convReturn RA[deg[: " + log.setNum(right ascension));
//savelog ("convReturn Dec[rad[: " + log.setNum(declination));

float h = (local sidereal time — right ascension); //calculate hour_ angle in
degrees

//savelog ("h[deg] " + log.setNum(h));

float hour angle; //value of hour angle must be positive 0—360 degrees
if (h<0)

hour angle = (360+h)*PI/180;
else

hour angle = h*PI/180;

//savelog ("hour angle[rad] " + log.setNum(hour angle));

float elevation = gAsin(qSin(dish geographical latitude)*qSin (declination) +
qCos(dish geographical latitude)*qCos(declination)*qCos(hour angle)); //
calculate the elevation in radians

float a = (gqAtan2(—qCos(declination)*qSin(hour angle),(gSin(declination)xqCos(
dish geographical latitude)—qCos(declination)*qCos(hour angle)*qSin (
dish geographical latitude))))=*180/PI;

//savelog("a " + log.setNum(a)); //value of azimuth must be within 0—360
degrees

float azimuth;

if (a<0)
azimuth=360+a;

else
azimuth=a;

horizontal [0] = azimuth;
horizontal [1] = elevation*180/PI;
}
void DishWindow :: convertTofloat (QString coord ||, float equatorial[]) //takes right
ascension/declination from the string array and converts them to floats in
degrees
{
QStringList coordListl = coord [0].split(":", QString:: SkipEmptyParts); //split
up the strings containting RA/Dec into separate arrays depending on where
;7 is placed
QStringList coordList2 = coord[1].split(":", QString:: SkipEmptyParts);
equatorial [0] = (coordListl [0].toFloat() + coordListl [1].toFloat()/60 +
coordListl [2]. toFloat () /3600)«15; //convert RA values to flaots and convert
into degrees
if (coordList2[0].toFloat() < 0) //check if wvalue is mnegative and add
accoringly
equatorial [1] = coordList2[0].toFloat () — gAbs((coordList2[1].toFloat() +
coordListl [2]. toFloat () /60)/60); //convert Dec values to flaots and
convert into degrees
else
equatorial [1] = coordList2 [0].toFloat() + (coordList2[1].toFloat() +
coordListl [2]. toFloat () /60)/60; //convert Dec wvalues to flaots and
convert into degrees
QString log;
//savelog ("conversion RA[deg|: " + log.setNum(equatorial [0]));
//savelog ("conversion Dec[deg[: " + log.setNum(equatorial[1]));
}

void DishWindow :: savelog (QString logMsg) //save event to logfile and show in

logwindow

o8

821
822

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885

C.3 dishwindow.cpp Source Code - GUI Controller

{
if (logMsg.contains ("Return_msg:", Qt:: CaseSensitive)) //print messages from the
controllerchip in dark red to make them easier to distinguish
{
ui—>logTextEdit—>setTextColor (QColor("darkRed")) ;
ui—logTextEdit—>append (logMsg) ;
ui—>logTextEdit—>setTextColor (QColor ("black"));
}
else
ui—>logTextEdit—>append (logMsg); //print msg to logwindow
//get current date
QDate date = QDate:: currentDate () ;
QString dateString = date.toString ("yyyy MM.dd");
//get current time
QTime time = QTime:: currentTime () ;
QString timeString = time.toString();
//open and save log message to log file
QFile logFile("log/" + dateString + ".log");
if (!logFile.open(QIODevice:: Append | QIODevice:: Text)) //check if file is open
return;
QTextStream out(&logFile);
out << timeString << "_" << logMsg << "\n";
logFile.close ()}
}
void DishWindow :: about () //show about dialog
{
QMessageBox : : about (this, tr("About_ASRT_—_Dish_Controller"),
tr ("<h2>Angstréom_Synthesis _Radio_Telescope_(ASRT)_—_Dish_Controller _0.8</h2>"
"<p>Author:_Henrik_Lindén"
"<p>Last_changed_on:_2010—11—-17"
"<p>Dish_Controller_connects_to_the_controllerchip_on_the_dishes_"
"of _the_Angstrom_Synthesis_Radio_Telescope_(ASRT))."));
}

void DishWindow :: help () //open helpfile browser

HelpBrowser :: showPage ("index . html") ;

}

bool DishWindow ::yesToScan() //check if the person really want to run the scan
{
int r = QMessageBox :: warning (this, tr("ASRTuquishHController"),
tr ("This_will_start_scan_of_the_hemisphere._It_might_
take_a_several _hours."
"<p>Are_your_sure_you_want_to_run_the_scan?"),
QMessageBox :: Yes | QMessageBox ::No);

if (r = QMessageBox:: Yes)
nextScan = true;
scanning = true;

return true;

}

return false;

}

bool DishWindow :: notConnected () //display not connected dialog

{
int r = QMessageBox:: information (this, tr("ASRT_—_Dish_Controller "),
tr ("You_are_not_connected_to_any_dish!"
"<p>Connect_and_try_again.") ,
QMessageBox : : Ok) ;

99

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

C.3 dishwindow.cpp Source Code - GUI Controller

if (r = QMessageBox ::0k){
savelog ("No_Connection!");
return true;
}
else{

savelog ("No_Connection!");
return true;

}
}
bool DishWindow :: noRuntime () //display no runtime set dialog
{
int r = QMessageBox:: information (this, tr("ASRT_—_Dish_Controller "),
tr ("No_Runtime_has_been_set!"
"<p>Set_Runtime_and_try_again."),
QMessageBox : : Ok) ;
if (r = QMessageBox::0k){
savelog ("No_Runtime_has_been_set!");
return true;
else{
savelog ("No_Runtime_has_been_set!");
return true;
}
}

bool DishWindow :: stopcloseMsg () //Check if want to diconnect and stop
{
int r = QMessageBox :: warning (this, tr("ASRTH—HDishHController"),
tr("You_are_connected_to_a_dish!_This_will_stop_any._
running_scans_and_positon_settings!"
"<p>Are_your_sure_you_want_to_proceed?"),
QMessageBox:: Yes | QMessageBox::No);
if (r = QMessageBox:: Yes)
return true;

return false;

}

void DishWindow :: readINI ()
{
QString text;
QString path = HelpBrowser:: directoryOf("conf").absolutePath();
QSettings settings(path + "/config.ini", QSettings::IniFormat)

)

text = settings.value("communication/ipadress8", "error").toString();
ui—>ip8LineEdit—>setText (text);

text = settings.value("communication/port8", "error").toString();
ui—>port8LineEdit—>setText (text);

text = settings.value("communication/ipadress7", "error").toString();
ui—>ip7LineEdit —>setText (text);

text = settings.value("communication/port7", "error").toString();

ui—>port7LineEdit—>setText (text);

text = settings.value("position/azimuth", "error").toString();
ui—azEdit—>setText (text);

text = settings.value("position/elevation", "error").toString();
ui—>elEdit —>setText (text);

text = settings.value("position/right ascension", "error").toString();
ui—>rightEdit —>setText (text);

text = settings.value("position/declination", "error").toString();

ui—>decEdit—>setText (text);

}

void DishWindow :: writeDefaultINTI ()
{

60

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

1001
1002

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

C.3 dishwindow.cpp Source Code - GUI Controller

QString text;

QString path = HelpBrowser:: directoryOf("conf").absolutePath();
QSettings settings(path + "/config.ini", QSettings::IniFormat);
//Communications

settings .beginGroup ("communication") ;
settings.setValue("ipadress8", "130.238.30.234");

text = settings.value("ipadress8", "error").toString();
ui—>ip8LineEdit—>setText (text);

settings.setValue ("port8", 5001);
text = settings.value("port8", "error").toString();
ui—>port8LineEdit—>setText (text);

settings.setValue("ipadress7", "130.238.30.200");
text = settings.value("ipadress7", "error").toString();
ui—>ip7LineEdit —>setText (text);

settings.setValue("port7", 5001);

text = settings.value("port7", "error").toString();
ui—>port7LineEdit—>setText (text);
settings.endGroup () ;

//Position

settings .beginGroup (" position");
settings.setValue("azimuth", 0);

text = settings.value("azimuth", "error").toString();
ui—azEdit—>setText (text);

settings.setValue("elevation", 0);
text = settings.value("elevation", "error").toString();
ui—>elEdit —>setText (text);

settings.setValue ("right ascension", "0:42:44.3");
text = settings.value("right ascension", "error").toString();
ui—>rightEdit —>setText (text);

settings.setValue("declination", "41:16:9");

text = settings.value("declination", "error").toString();
ui—>decEdit—>setText (text);

settings .endGroup () ;

//Settings

settings.beginGroup ("settings");
settings.setValue ("beam width", 7.0);
settings .endGroup () ;

}

void DishWindow :: closeEvent (QCloseEvent xevent) //check if there are open TCPIP
connections, close them and write log to file before exziting program
{

if ((tcpSocket[0].state() !=0) | (tcpSocket[1l].state() !=0)) //check if there
is a conmection, ask to close it and quit program

{
if (stopcloseMsg())
closeConnection () ;
savelog ("Exiting_program!\n");
event—>accept () ;
}
else
event—>ignore () ;
}
else

savelog ("Exiting_program!\n");
event—>accept () ;

61

C.4 helpbrowser.h Source Code - GUI Controller

1017 }
1018 |}

C.4 helpbrowser.h

1 |#ifndef HELPBROWSER H

2 |#define HELPBROWSER H

3

4 |#include <QString>

5 |#include <QWidget>

6 |#include <QDir>

7

8 | namespace Ui {

9 class Helpwindow ;

10 |}

11

12 | class HelpBrowser : public QWidget

13

14 Q_OBIJECT

15

16 | private:

17 Ui:: Helpwindow xhb;

18

19 | public:

20 HelpBrowser (const QString &path, const QString &page, QWidget xparent = 0); //
constructor

21 “HelpBrowser () ;

22

23 static void showPage(const QString &page);

24 static QDir directoryOf(const QString &subdir);

25

26 | private slots:

27 void updateWindowTitle () ;

28 void home () ;

29 void backward () ;

30 |}

31

32 |#endif // HELPBROWSER H

C.5 helpbrowser.cpp

1 [#include <QString>

2 |#include <QDir>

3

4 |#include "ui_ helpbrowser.h"

5 |#include "helpbrowser.h"

6

7

8 | HelpBrowser :: HelpBrowser (const QString &path, const QString &page, QWidget xparent)
QWidget (parent), hb(new Ui:: Helpwindow)

9 |{

10 hb—>setupUi(this);

11

12 //setAttribute (Qt:: WA _DeleteOnClose) ;

13 setAttribute (Qt:: WA _GroupLeader) ;

14 hb—>closeButton—>setShortcut (tr ("Esc"));

15

16 hb—>textBrowser—>setSearchPaths (QStringList () << path << ":/img");

17 hb—>textBrowser—>setSource (page) ;

18 |}

19

62

20
21
22
23
24

26
27
28
29
30
31
32
33
34
35

37
38
39
40
41
42
43

45
46
47
48
49

51
52
53

© 00U WN -

NN DN DN DNDNDNDLN = = = = = e = =
N U W OO U WN O

C.6 ui_dishwindow.h Source Code - GUI Controller

HelpBrowser::~ HelpBrowser ()

delete hb;
}

void HelpBrowser :: updateWindowTitle ()

{
}

QDir HelpBrowser:: directoryOf(const QString &subdir)

setWindowTitle (tr ("ASRT_—_Help:_%1") . arg (hb—>textBrowser —>documentTitle ()));

QDir dir (QApplication:: applicationDirPath ());
dir.cd(subdir);

return dir;

}

void HelpBrowser ::showPage(const QString &page)

QString path = directoryOf("doc").absolutePath();
HelpBrowser s#browser = new HelpBrowser (path, page);
browser —>show () ;

}
void HelpBrowser :: home /()
{
hb—>textBrowser —>home () ;
}

void HelpBrowser :: backward ()

hb—>textBrowser —>backward () ;

C.6 ui_dishwindow.h

/KRR R KK K K K o o oK oK 3K oK oK oK oK K KK KKK KKK R R R K K K K K o o o 3K 3K 3K 3K oK ok oK oK KK KKK KK R R R R KK K K K o
xx Form generated from reading Ul file ’dishwindow.ui’

*x
xx Created: Thu 4. Nov 16:10:20 2010

*% by: Qt User Interface Compiler version 4.6.3
*x

x+% WARNING! All changes made in this file will be lost when recompiling UI file!

**/

#ifndef Ul DISHWINDOW_ H
#define Ul DISHWINDOW H

#include <QtCore/QVariant>
#include <QtGui/QAction>
#include <QtGui/QApplication>
#include <QtGui/QButtonGroup>
#include <QtGui/QFrame>
#include <QtGui/QGroupBox>
#include <QtGui/QHBoxLayout>
#include <QtGui/QHeaderView>
#include <QtGui/QLabel>
#include <QtGui/QLineEdit>
#include <QtGui/QMainWindow>
#include <QtGui/QMenu>
#include <QtGui/QMenuBar>
#include <QtGui/QProgressBar>
#include <QtGui/QPushButton>

63

C.6 ui_dishwindow.h

Source Code - GUI Controller

#include <QtGui/QRadioButton>
#include <QtGui/QSpacerltem>
#include <QtGui/QTextEdit>
#include <QtGui/QTimeEdit>
#include <QtGui/QVBoxLayout>
#include <QtGui/QWidget>

QT BEGIN NAMESPACE

class Ui_DishWindow

{

public:

QAction *xactionAbout;

QAction xactionExit;

QAction *xactionHelp;

QAction xactionControllerchip version;
QAction xactionCalculate default scan pattern;
QAction *xaction Set default settings;
QWidget xcentralwidget ;
QGroupBox *positionBox

QWidget xlayoutWidget ;
QHBoxLayout xhorizontalLayout 3;
QVBoxLayout xverticalLayout 12;
QPushButton *xsetfixButton;
QSpacerltem xverticalSpacer 3;
QLabel xposLabel;

QSpacerltem =*verticalSpacer 4;
QVBoxLayout xverticalLayout 7;
QRadioButton xdegreesRadioButton;
QHBoxLayout xhorizontalLayout 2;
QVBoxLayout xverticalLayout 6;
QLabel xazLabel;

QLabel xelLabel;

QVBoxLayout xverticalLayout 5;
QLineEdit xazEdit ;

QLineEdit xelEdit ;

QLabel xazposLabel;

QLabel xelposLabel;

QVBoxLayout xverticalLayout 8;
QRadioButton xcoordRadioButton;
QHBoxLayout xhorizontalLayout;
QVBoxLayout xverticalLayout 2;
QLabel xlabel 3;

QLabel xlabel 4;

QVBoxLayout xverticalLayout;
QLineEdit xrightEdit;

QLineEdit xdecEdit;

QLabel xraposLabel;

QLabel xdecposLabel;

QWidget xlayoutWidget 2;
QHBoxLayout xhorizontalLayout 9;
QLabel xtracktimeLabel;
QTimeEdit *tracktimeEdit;
QPushButton *xtrackButton;
QFrame x*line;

QGroupBox *dishBox;

QWidget xlayoutWidgetl;
QVBoxLayout xverticalLayout 11;
QHBoxLayout xhorizontalLayout 6;
QRadioButton xD8RadioButton;
QLabel xip8Label;

QLineEdit *ip8LineEdit;

QLabel xlabel;

QLineEdit *port8LineEdit;
QHBoxLayout xhorizontalLayout 7;
QRadioButton *D7RadioButton;
QLabel xip7Label;

64

95
96
97
98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155

156
157

158

C.6 ui_dishwindow.h Source Code - GUI Controller

QLineEdit xip7LineEdit;

QLabel xlabel 2;

QLineEdit xport7LineEdit;
QHBoxLayout xhorizontalLayout 8;
QVBoxLayout xverticalLayout 3;
QSpacerltem =*verticalSpacer 2;
QRadioButton *interRadioButton;
QSpacerltem x*verticalSpacer;
QVBoxLayout xverticalLayout 10;
QPushButton *connectButton;
QPushButton *disconnectButton;
QGroupBox *scanBox;

QWidget *layoutWidget2;
QHBoxLayout xhorizontalLayout 4;
QLabel xruntimeLabel;
QTimeEdit *runtimeEdit;
QPushButton *scanButton;
QWidget xlayoutWidget3;
QVBoxLayout xverticalLayout 9;
QLabel xlogLabel;

QTextEdit xlogTextEdit;

QFrame xline 2;

QWidget *layoutWidget4;
QVBoxLayout xverticalLayout 4;
QHBoxLayout xhorizontalLayout 10;
QLabel xlabel 5;

QSpacerltem xhorizontalSpacer;
QProgressBar xprogressBar;
QWidget *layoutWidgetbs;
QVBoxLayout xverticalLayout 13;
QPushButton *stopButton;
QPushButton *resetButton;
QMenuBar s*menubar ;

QMenu *menuMenu ;

QMenu s*menuAbout ;

QMenu *menuHelp ;

void setupUi(QMainWindow *DishWindow)

{

if (DishWindow—>objectName () .isEmpty ())
DishWindow—>setObjectName (QString :: fromUtf8 ("DishWindow")) ;

DishWindow—>setEnabled (true) ;

DishWindow—>resize (600, 660);

QSizePolicy sizePolicy (QSizePolicy :: Fixed, QSizePolicy::Fixed);

sizePolicy .setHorizontalStretch (0);

sizePolicy .setVerticalStretch (0);

sizePolicy .setHeightForWidth (DishWindow—>sizePolicy () . hasHeightForWidth ()) ;

DishWindow—>setSizePolicy (sizePolicy);

DishWindow—>setMinimumSize (QSize (600, 660));

DishWindow—>setMaximumSize (QSize (600, 660));

QlIcon icon;

icon.addFile (QString:: fromUtf8(":/img/img/satellite 256 .png"), QSize(),
QIcon ::Normal, QIcon:: Off);

DishWindow—>setWindowIcon (icon) ;

actionAbout = new QAction(DishWindow) ;

actionAbout —>setObjectName (QString :: fromUtf8 ("actionAbout"));

actionExit = new QAction(DishWindow) ;

actionExit —>setObjectName (QString :: fromUtf8 ("actionExit"));

actionHelp = new QAction (DishWindow) ;

actionHelp —>setObjectName (QString :: fromUtf8 ("actionHelp"));

actionControllerchip version = new QAction(DishWindow) ;

actionControllerchip version—>setObjectName (QString:: fromUt{8 ("
actionControllerchip version"));

actionCalculate default scan pattern = new QAction(DishWindow) ;

actionCalculate default scan pattern—>setObjectName (QString:: fromUtf8 ("
actionCalculate default scan_pattern"));

action Set default settings = new QAction(DishWindow) ;

65

C.6 ui_dishwindow.h Source Code - GUI Controller

159 action_Set _default_settings—>setObjectName (QString :: fromUtf8 ("
action Set default settings"));

160 centralwidget = new QWidget(DishWindow) ;

161 centralwidget —>setObjectName (QString :: fromUtf8 (" centralwidget"));

162 positionBox = new QGroupBox(centralwidget);

163 positionBox —>setObjectName (QString :: fromUtf8 (" positionBox"));

164 positionBox —>setGeometry (QRect (10, 160, 571, 231));

165 layoutWidget = new QWidget(positionBox);

166 layoutWidget —>setObjectName (QString :: fromUtf8 ("layoutWidget")) ;

167 layoutWidget —>setGeometry (QRect (12, 25, 541, 141));

168 horizontalLayout 3 = new QHBoxLayout(layoutWidget) ;

169 horizontalLayout 3—>setObjectName (QString:: fromUtf8 ("horizontalLayout 3"));

170 horizontalLayout 3—>setContentsMargins(0, 0, 0, 0);

171 verticalLayout 12 = new QVBoxLayout() ;

172 verticalLayout 12—>setObjectName (QString:: fromUtf8 ("verticalLayout 12"));

173 setfixButton = new QPushButton(layoutWidget);

174 setfixButton —>setObjectName (QString :: fromUtf8 ("setfixButton"));

175 sizePolicy .setHeightForWidth (setfixButton —>sizePolicy () . hasHeightForWidth ()
)

176 setfixButton—>setSizePolicy (sizePolicy);

177 setfixButton —>setMinimumSize (QSize (0, 35));

178

179 verticalLayout 12—>addWidget(setfixButton);

180

181 verticalSpacer 3 = new QSpacerltem (20, 25, QSizePolicy :: Minimum,
QSizePolicy :: Fixed) ;

182

183 verticalLayout 12—>addItem (verticalSpacer 3);

184

185 posLabel = new QLabel(layoutWidget);

186 posLabel—>setObjectName (QString :: fromUtf8 ("posLabel"));

187

188 verticalLayout 12—>addWidget(posLabel);

189

190 verticalSpacer 4 = new QSpacerltem (20, 5, QSizePolicy ::Minimum, QSizePolicy
:: Fixed);

191

192 verticalLayout 12—>addItem (verticalSpacer_4);

193

194

195 horizontalLayout 3—>addLayout(verticalLayout 12);

196

197 verticalLayout 7 = new QVBoxLayout() ;

198 verticalLayout 7—>setObjectName (QString:: fromUtf8("verticalLayout 7"));

199 degreesRadioButton = new QRadioButton(layoutWidget) ;

200 degreesRadioButton—>setObjectName (QString :: fromUtf8 (" degreesRadioButton"));

201 degreesRadioButton—>setChecked (true) ;

202

203 verticalLayout 7—>addWidget(degreesRadioButton);

204

205 horizontalLayout 2 = new QHBoxLayout() ;

206 horizontalLayout 2—>setObjectName (QString:: fromUtf8 ("horizontalLayout 2"));

207 verticalLayout 6 = new QVBoxLayout() ;

208 verticalLayout 6—>setObjectName (QString:: fromUtf8 ("verticalLayout 6"));

209 azLabel = new QLabel(layoutWidget);

210 azLabel—>setObjectName (QString :: fromUtf8 ("azLabel"));

211

212 verticalLayout 6—>addWidget(azLabel);

213

214 elLabel = new QLabel(layoutWidget) ;

215 elLabel —>setObjectName (QString :: fromUtf8 ("elLabel"));

216

217 verticalLayout 6—>addWidget(elLabel);

218

219

220 horizontalLayout 2—>addLayout(verticalLayout 6);

221

66

C.6 ui_dishwindow.h Source Code - GUI Controller

222 verticalLayout 5 = new QVBoxLayout() ;

223 verticalLayout 5—>setObjectName (QString:: fromUtf8 ("verticalLayout 5"));
224 azEdit = new QLineEdit (layoutWidget) ;

225 azEdit—>setObjectName (QString :: fromUtf8 ("azEdit"));

226 azEdit—>setEnabled (true);

227 azEdit—>setInputMethodHints (Qt:: ImhNone) ;

228

229 verticalLayout 5—>addWidget (azEdit);

230

231 elEdit = new QLineEdit(layoutWidget) ;

232 elEdit —setObjectName (QString :: fromUtf8 ("elEdit"));

233 elEdit —setEnabled (true) ;

234

235 verticalLayout 5—>addWidget(elEdit);

236

237

238 horizontalLayout 2-—>addLayout(verticalLayout 5);

239

240

241 verticalLayout 7—>addLayout(horizontalLayout 2);

242

243 azposLabel = new QLabel(layoutWidget) ;

244 azposLabel—>setObjectName (QString :: fromUtf8 ("azposLabel"));
245

246 verticalLayout 7—>addWidget(azposLabel);

247

248 elposLabel = new QLabel (layoutWidget) ;

249 elposLabel—>setObjectName (QString :: fromUtf8 ("elposLabel"));
250

251 verticalLayout 7—>addWidget(elposLabel);

252

253

254 horizontalLayout 3—>addLayout(verticalLayout 7);

255

256 verticalLayout 8 = new QVBoxLayout() ;

257 verticalLayout 8—>setObjectName (QString:: fromUtf8 ("verticalLayout 8"));
258 coordRadioButton = new QRadioButton (layoutWidget) ;

259 coordRadioButton—>setObjectName (QString :: fromUtf8 ("coordRadioButton"));
260

261 verticalLayout 8—>addWidget (coordRadioButton);

262

263 horizontalLayout = new QHBoxLayout () ;

264 horizontalLayout —>setObjectName (QString :: fromUtf8 ("horizontalLayout"));
265 verticalLayout 2 = new QVBoxLayout() ;

266 verticalLayout 2—>setObjectName (QString:: fromUtf8 ("verticalLayout 2"));
267 label 3 = new QLabel(layoutWidget);

268 label 3—>setObjectName (QString :: fromUtf8("label 3"));

269

270 verticalLayout _2—>addWidget (label _3);

271

272 label 4 = new QLabel(layoutWidget);

273 label 4—>setObjectName (QString :: fromUtf8 ("label 4"));

274

275 verticalLayout 2-—>addWidget (label 4);

276

277

278 horizontalLayout —>addLayout (verticalLayout 2);

279

280 verticalLayout = new QVBoxLayout () ;

281 verticalLayout —>setObjectName (QString :: fromUtf8 (" verticalLayout"));
282 rightEdit = new QLineEdit(layoutWidget);

283 rightEdit —>setObjectName (QString :: fromUtf8 ("rightEdit"));
284 rightEdit —>setEnabled (false);

285

286 verticalLayout —addWidget (rightEdit) ;

287

288 decEdit = new QLineEdit (layoutWidget) ;

67

C.6 ui_dishwindow.h Source Code - GUI Controller

289 decEdit—>setObjectName (QString :: fromUtf8 ("decEdit"));

290 decEdit—>setEnabled (false);

291

292 verticalLayout —>addWidget (decEdit) ;

293

294

295 horizontalLayout —addLayout(verticalLayout);

296

297

298 verticalLayout 8—>addLayout(horizontalLayout);

299

300 raposLabel = new QLabel(layoutWidget) ;

301 raposLabel—>setObjectName (QString :: fromUtf8 ("raposLabel"));

302

303 verticalLayout 8—>addWidget(raposLabel);

304

305 decposLabel = new QLabel(layoutWidget) ;

306 decposLabel —>setObjectName (QString : : fromUtf8 ("decposLabel"));

307

308 verticalLayout 8—>addWidget(decposLabel);

309

310

311 horizontalLayout 3—>addLayout(verticalLayout 8);

312

313 layoutWidget 2 = new QWidget(positionBox);

314 layoutWidget 2—>setObjectName (QString :: fromUtf8 ("layoutWidget 2"));

315 layoutWidget 2—>setGeometry (QRect (100, 200, 224, 22));

316 horizontalLayout 9 = new QHBoxLayout(layoutWidget 2);

317 horizontalLayout 9—>setObjectName (QString :: fromUtf8 ("horizontalLayout 9"));

318 horizontalLayout 9—>setContentsMargins(0, 0, 0, 0);

319 tracktimeLabel = new QLabel(layoutWidget 2);

320 tracktimeLabel —>setObjectName (QString :: fromUtf8 ("tracktimeLabel"));

321

322 horizontalLayout 9—>addWidget (tracktimeLabel);

323

324 tracktimeEdit = new QTimeEdit(layoutWidget 2);

325 tracktimeEdit —>setObjectName (QString :: fromUtf8 ("tracktimeEdit"));

326 tracktimeEdit —>setMinimumDateTime (QDateTime (QDate (2000, 1, 1), QTime(0, O,
0)));

327 tracktimeEdit —>setMaximumTime (QTime(23, 59, 59));

328 tracktimeEdit —>setCurrentSection (QDateTimeEdit :: HourSection) ;

329 tracktimeEdit —>setCalendarPopup (false);

330 tracktimeEdit —>setCurrentSectionIndex (0) ;

331 tracktimeEdit —>setTimeSpec (Qt:: LocalTime) ;

332

333 horizontalLayout 9-—>addWidget(tracktimeEdit);

334

335 trackButton = new QPushButton(positionBox);

336 trackButton—>setObjectName (QString :: fromUtf8 ("trackButton"));

337 trackButton—>setGeometry (QRect (10, 190, 81, 35));

338 sizePolicy .setHeightForWidth (trackButton—>sizePolicy () . hasHeightForWidth ())

339 trackButton—>setSizePolicy (sizePolicy);

340 trackButton—>setMinimumSize (QSize (0, 35));

341 line = new QFrame(positionBox);

342 line —>setObjectName (QString :: fromUtf8("line"));

343 line —>setGeometry (QRect (20, 170, 521, 16));

344 line —>setFrameShape (QFrame :: HLine) ;

345 line —>setFrameShadow (QFrame: : Sunken) ;

346 layoutWidget 2—>raise ();

347 trackButton—>raise () ;

348 line—>raise () ;

349 layoutWidget—>raise () ;

350 dishBox = new QGroupBox(centralwidget);

351 dishBox—>setObjectName (QString :: fromUtf8 ("dishBox"));

352 dishBox—>setGeometry (QRect (10, 10, 341, 151));

353 layoutWidgetl = new QWidget(dishBox);

68

C.6 ui_dishwindow.h Source Code - GUI Controller

354 layoutWidgetl—>setObjectName (QString :: fromUtf8 ("layoutWidgetl"));
355 layoutWidgetl—>setGeometry (QRect (10, 21, 321, 114));

356 verticalLayout 11 = new QVBoxLayout(layoutWidgetl);

357 verticalLayout 11—>setObjectName (QString:: fromUtf8 ("verticalLayout 11"));
358 verticalLayout 11—>setContentsMargins(0, 0, 0, 0);

359 horizontalLayout 6 = new QHBoxLayout() ;

360 horizontalLayout 6—>setObjectName (QString:: fromUtf8 ("horizontalLayout 6"));
361 D8RadioButton = new QRadioButton (layoutWidgetl);

362 D8RadioButton—>setObjectName (QString :: fromUtf8 ("D8RadioButton")) ;
363 D8RadioButton—>setChecked (true) ;

364

365 horizontalLayout 6—>addWidget (D8RadioButton) ;

366

367 ip8Label = new QLabel(layoutWidgetl);

368 ip8Label —>setObjectName (QString :: fromUtf8 ("ip8Label"));

369

370 horizontalLayout 6—>addWidget (ip8Label);

371

372 ip8LineEdit = new QLineEdit(layoutWidgetl);

373 ip8LineEdit —>setObjectName (QString :: fromUtf8 ("ip8LineEdit"));

374

375 horizontalLayout 6—>addWidget (ip8LineEdit);

376

377 label = new QLabel(layoutWidgetl);

378 label —>setObjectName (QString :: fromUtf8 ("label"));

379

380 horizontalLayout 6—>addWidget(label);

381

382 port8LineEdit = new QLineEdit(layoutWidgetl);

383 port8LineEdit —>setObjectName (QString :: fromUtf8 ("port8LineEdit"));
384

385 horizontalLayout 6—>addWidget (port8LineEdit);

386

387

388 verticalLayout 11—>addLayout (horizontalLayout 6);

389

390 horizontalLayout 7 = new QHBoxLayout() ;

391 horizontalLayout 7—>setObjectName (QString:: fromUtf8 ("horizontalLayout 7"));
392 D7RadioButton = new QRadioButton (layoutWidgetl);

393 D7RadioButton—>setObjectName (QString :: fromUtf8 ("D7RadioButton"));
394

395 horizontalLayout 7—>addWidget (D7RadioButton);

396

397 ip7Label = new QLabel(layoutWidgetl);

398 ip7Label —>setObjectName (QString :: fromUtf8 ("ip7Label"));

399

400 horizontalLayout 7—>addWidget(ip7Label);

401

402 ip7LineEdit = new QLineEdit(layoutWidgetl);

403 ip7LineEdit —>setObjectName (QString :: fromUtf8 ("ip7LineEdit"));

404

405 horizontalLayout 7—>addWidget (ip7LineEdit);

406

407 label 2 = new QLabel(layoutWidgetl);

408 label 2—>setObjectName (QString :: fromUtf8("label 2"));

409

410 horizontalLayout 7-—>addWidget(label 2);

411

412 port7LineEdit = new QLineEdit(layoutWidgetl);

413 port7LineEdit —>setObjectName (QString :: fromUtf8 ("port7LineEdit"));
414

415 horizontalLayout 7—>addWidget(port7LineEdit);

416

417

418 verticalLayout 11—>addLayout(horizontalLayout 7);

419

420 horizontalLayout 8 = new QHBoxLayout () ;

69

C.6 ui_dishwindow.h Source Code - GUI Controller

421 horizontalLayout 8—>setObjectName (QString:: fromUtf8 ("horizontalLayout 8"));

422 verticalLayout 3 = new QVBoxLayout() ;

423 verticalLayout 3—>setObjectName (QString:: fromUtf8 ("verticalLayout 3"));

424 verticalSpacer 2 = new QSpacerltem (20, 28, QSizePolicy :: Minimum,
QSizePolicy :: Expanding) ;

425

426 verticalLayout 3—>addItem (verticalSpacer 2);

427

428 interRadioButton = new QRadioButton (layoutWidgetl);

429 interRadioButton—>setObjectName (QString :: fromUtf8 ("interRadioButton"));

430 interRadioButton—>setEnabled (true);

431

432 verticalLayout 3—>addWidget (interRadioButton);

433

434 verticalSpacer = new QSpacerltem (20, 28, QSizePolicy :: Minimum, QSizePolicy
:: Expanding) ;

435

436 verticalLayout 3—>addItem (verticalSpacer);

437

438

439 horizontalLayout 8—>addLayout(verticalLayout 3);

440

441 verticalLayout 10 = new QVBoxLayout () ;

442 verticalLayout 10—>setObjectName (QString:: fromUtf8 ("verticalLayout 10"));

443 connectButton = new QPushButton(layoutWidgetl);

444 connectButton—>setObjectName (QString :: fromUtf8 (" connectButton"));

445

446 verticalLayout 10—>addWidget(connectButton);

447

448 disconnectButton = new QPushButton(layoutWidgetl);

449 disconnectButton—>setObjectName (QString :: fromUtf8 ("disconnectButton"));

450 disconnectButton—>setEnabled (false);

451

452 verticalLayout 10—>addWidget (disconnectButton);

453

454

455 horizontalLayout 8—>addLayout(verticalLayout 10);

456

457

458 verticalLayout 11—>addLayout(horizontalLayout 8);

459

460 scanBox = new QGroupBox(centralwidget);

461 scanBox—>setObjectName (QString : : fromUtf8 ("scanBox")) ;

462 scanBox—>setGeometry (QRect (300, 410, 247, 102));

463 layoutWidget2 = new QWidget (scanBox);

464 layoutWidget2—>setObjectName (QString :: fromUtf8 ("layoutWidget2"));

465 layoutWidget2—>setGeometry (QRect (10, 60, 227, 22));

466 horizontalLayout 4 = new QHBoxLayout(layoutWidget2);

467 horizontalLayout 4—>setObjectName (QString:: fromUtf8 ("horizontalLayout 4"));

468 horizontalLayout 4—>setContentsMargins(0, 0, 0, 0);

469 runtimeLabel = new QLabel(layoutWidget2);

470 runtimeLabel—>setObjectName (QString :: fromUtf8 ("runtimeLabel"));

471

472 horizontalLayout 4—>addWidget (runtimeLabel);

473

474 runtimeEdit = new QTimeEdit (layoutWidget2);

475 runtimeEdit—>setObjectName (QString : : fromUtf8 ("runtimeEdit"));

476 runtimeEdit —>setMinimumDateTime (QDateTime (QDate (2000, 1, 1), QTime(0, 0, 0)
))s

477 runtimeEdit —>setMaximumTime (QTime (23, 59, 59));

478 runtimeEdit—>setCurrentSection (QDateTimeEdit :: HourSection) ;

479 runtimeEdit—>setCalendarPopup (false);

480 runtimeEdit—>setCurrentSectionIndex (0) ;

481 runtimeEdit—>setTimeSpec (Qt:: LocalTime) ;

482

483 horizontalLayout 4—>addWidget (runtimeEdit);

484

70

C.6 ui_dishwindow.h Source Code - GUI Controller

485 scanButton = new QPushButton (scanBox) ;

486 scanButton—>setObjectName (QString :: fromUtf8 ("scanButton")) ;

487 scanButton—>setGeometry (QRect (10, 20, 101, 31));

488 sizePolicy .setHeightForWidth (scanButton—>sizePolicy () . hasHeightForWidth ()) ;

489 scanButton—>setSizePolicy (sizePolicy);

490 layoutWidget3 = new QWidget(centralwidget);

491 layoutWidget3—>setObjectName (QString :: fromUtf8 ("layoutWidget3"));

492 layoutWidget3—>setGeometry (QRect (10, 400, 271, 221));

493 verticalLayout 9 = new QVBoxLayout(layoutWidget3);

494 verticalLayout 9—>setObjectName (QString:: fromUtf8 ("verticalLayout 9"));

495 verticalLayout 9—>setContentsMargins(0, 0, 0, 0);

496 logLabel = new QLabel(layoutWidget3);

497 logLabel—>setObjectName (QString :: fromUtf8 ("logLabel"));

498

499 verticalLayout 9—>addWidget(logLabel);

500

501 logTextEdit = new QTextEdit(layoutWidget3);

502 logTextEdit—>setObjectName (QString : : fromUtf8 ("logTextEdit"));

503 logTextEdit—>setAutoFillBackground (false);

504 logTextEdit —>setUndoRedoEnabled (false) ;

505 logTextEdit—>setAcceptRichText (false);

506 logTextEdit—>setTextInteractionFlags (Qt:: TextSelectableByMouse) ;

507

508 verticalLayout 9—>addWidget (logTextEdit);

509

510 line 2 = new QFrame(centralwidget);

511 line 2—>setObjectName (QString :: fromUtf8("line 2"));

512 line 2—>setGeometry (QRect (320, 540, 211, 16));

513 line 2—>setFrameShape (QFrame:: HLine) ;

514 line 2—>setFrameShadow (QFrame:: Sunken) ;

515 layoutWidget4 = new QWidget(centralwidget);

516 layoutWidget4—>setObjectName (QString :: fromUtf8 ("layoutWidgetd")) ;

517 layoutWidget4 —>setGeometry (QRect (310, 570, 268, 51));

518 verticalLayout 4 = new QVBoxLayout(layoutWidget4);

519 verticalLayout 4—>setObjectName (QString:: fromUtf8 ("verticalLayout 4"));

520 verticalLayout 4—>setContentsMargins(0, 0, 0, 0);

521 horizontalLayout 10 = new QHBoxLayout() ;

522 horizontalLayout 10—>setObjectName (QString :: fromUtf8 ("horizontalLayout 10")
)

523 label 5 = new QLabel(layoutWidget4);

524 label 5—>setObjectName (QString :: fromUtf8("label 5"));

525

526 horizontalLayout 10—>addWidget (label 5);

527

528 horizontalSpacer = new QSpacerltem (118, 20, QSizePolicy :: Expanding,
QSizePolicy :: Minimum) ;

529

530 horizontalLayout 10—>addItem (horizontalSpacer);

531

532

533 verticalLayout 4—>addLayout (horizontalLayout 10);

534

535 progressBar = new QProgressBar (layoutWidget4);

536 progressBar —>setObjectName (QString :: fromUtf8 (" progressBar"));

537 progressBar—>setEnabled (false);

538 progressBar—>setValue (0) ;

539

540 verticalLayout 4—>addWidget(progressBar);

541

542 layoutWidget5 = new QWidget (centralwidget);

543 layoutWidget5—>setObjectName (QString :: fromUtf8 ("layoutWidget5"));

544 layoutWidgets—>setGeometry (QRect (420, 50, 101, 81));

545 verticalLayout 13 = new QVBoxLayout(layoutWidget5);

546 verticalLayout 13—>setObjectName (QString:: fromUtf8 ("verticalLayout 13"));

547 verticalLayout 13—>setContentsMargins(0, 0, 0, 0);

548 stopButton = new QPushButton (layoutWidget5) ;

549 stopButton—>setObjectName (QString :: fromUtf8 ("stopButton"));

71

C.6 ui_dishwindow.h Source Code - GUI Controller

550 QSizePolicy sizePolicyl (QSizePolicy :: Minimum, QSizePolicy :: Minimum) ;

551 sizePolicyl .setHorizontalStretch (0) ;

552 sizePolicyl .setVerticalStretch (0);

553 sizePolicyl .setHeightForWidth (stopButton—>sizePolicy () . hasHeightForWidth ())

554 stopButton—>setSizePolicy (sizePolicyl);

555

556 verticalLayout 13 —>addWidget (stopButton);

557

558 resetButton = new QPushButton (layoutWidget5);

559 resetButton —>setObjectName (QString :: fromUtf8 ("resetButton"));

560 sizePolicyl .setHeightForWidth (resetButton—>sizePolicy () . hasHeightForWidth ()
)

561 resetButton—>setSizePolicy (sizePolicyl);

562

563 verticalLayout 13—>addWidget(resetButton);

564

565 DishWindow—>setCentralWidget (centralwidget) ;

566 menubar = new QMenuBar(DishWindow) ;

567 menubar—>setObjectName (QString :: fromUtf8 ("menubar")) ;

568 menubar—>setGeometry (QRect (0, 0, 600, 21));

569 menuMenu = new QMenu(menubar) ;

570 menuMenu—>setObjectName (QString : : fromUtf8 ("menuMenu")) ;

571 menuAbout = new QMenu(menubar) ;

572 menuAbout—>setObjectName (QString :: fromUtf8 ("menuAbout")) ;

573 menuHelp = new QMenu(menubar) ;

574 menuHelp—>setObjectName (QString : : fromUtf8 ("menuHelp")) ;

575 DishWindow—>setMenuBar (menubar) ;

576 QWidget :: set TabOrder (degreesRadioButton , azEdit);

577 QWidget : : setTabOrder (azEdit , elEdit);

578 QWidget :: set TabOrder (elEdit , coordRadioButton);

579 QWidget : : setTabOrder (coordRadioButton, rightEdit);

580 QWidget :: set TabOrder (rightEdit , decEdit);

581 QWidget :: set TabOrder (decEdit , D8RadioButton) ;

582 QWidget :: set TabOrder (D8RadioButton, D7RadioButton);

583 QWidget :: set TabOrder (D7RadioButton, connectButton);

584 QWidget :: set TabOrder (connectButton, scanButton);

585

586 menubar—>addAction (menuMenu—>menuAction ()) ;

587 menubar—>addAction (menuHelp—>menuAction ()) ;

588 menubar—>addAction (menuAbout—>menuAction ()) ;

589 menuMenu—>addAction (actionCalculate default_scan_pattern);

590 menuMenu—>addAction (action Set default settings);

591 menuMenu—>addSeparator () ;

592 menuMenu—>addAction (actionExit);

593 menuAbout—>addAction (actionAbout);

594 menuAbout—>addAction (actionControllerchip version);

595 menuHelp—>addAction (actionHelp) ;

596

597 retranslateUi (DishWindow) ;

598 QObject :: connect (actionExit , SIGNAL(triggered ()), DishWindow, SLOT(close())
)

599 QObject :: connect (actionAbout , SIGNAL(triggered ()), DishWindow, SLOT(about ()
))s

600 QObject : : connect (scanButton , SIGNAL(clicked ()), DishWindow, SLOT(scan()));

601 QObject :: connect (stopButton , SIGNAL(clicked ()), DishWindow, SLOT(stop()));

602 QObject : : connect (resetButton , SIGNAL(clicked ()), DishWindow, SLOT(reset ()))

603 QObject : : connect (connectButton , SIGNAL(clicked ()), DishWindow, SLOT(
checkMode ())) ;

604 QObject : : connect (disconnectButton , SIGNAL(clicked ()), DishWindow, SLOT(
checkDisconnect()));

605 QObject :: connect (trackButton , SIGNAL(clicked ()), DishWindow, SLOT(calcTrack
0));

606 QObject :: connect (actionCalculate default scan pattern, SIGNAL(triggered()),

DishWindow, SLOT(calcScan()));

72

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

622

623

624

625

626

627

628

629

630
631

632
633

634
635
636
637
638
639
640
641
642
643

644
645

C.6 ui_dishwindow.h Source Code - GUI Controller

nn
)

nn
)

nn
)

QObject :: connect (actionHelp , SIGNAL(triggered ()), DishWindow, SLOT(help()))

QObject :: connect (actionControllerchip version , SIGNAL(triggered()),
DishWindow, SLOT(version()));

QObject :: connect (action Set default settings, SIGNAL(triggered()),
DishWindow, SLOT(writeDefaultINI()));

QMetaObject : : connectSlotsByName (DishWindow) ;
Y // setupU:

void retranslateUi (QMainWindow *DishWindow)

DishWindow—>setWindowTitle (QApplication :: translate ("DishWindow", "\303\205
ngstr\303\266m_Synthesis_Radio_Telescope_(\303\205SRT)_—_Dish_
Controller", 0, QApplication :: UnicodeUTF8)) ;

actionAbout—>setText (QApplication :: translate ("DishWindow", "&About_\303\205
SRT...", 0, QApplication :: UnicodeUTFS8));

actionExit —>setText (QApplication:: translate ("DishWindow" , "E&xit", 0,
QApplication :: UnicodeUTFS)) ;

actionHelp—>setText (QApplication:: translate ("DishWindow" , "&Help", 0,
QApplication :: UnicodeUTFS)) ;

actionHelp—>setShortcut (QApplication:: translate ("DishWindow", "F1", 6 0,
QApplication :: UnicodeUTF8)) ;

actionControllerchip version—>setText (QApplication:: translate ("DishWindow" ,

"Controllerchip _&version", 0, QApplication :: UnicodeUTF8)) ;
actionCalculate default scan pattern—>setText(QApplication:: translate ("
DishWindow" , "&Set_default_scanning_pattern", 0, QApplication::

UnicodeUTFS)) ;

action Set default settings—>setText(QApplication:: translate ("DishWindow" ,

"&Set_default_settings_to_ini_file", 0, QApplication:: UnicodeUTF8)) ;

positionBox—>setTitle (QApplication:: translate ("DishWindow", "Fix_Position",
0, QApplication :: UnicodeUTF8));
setfixButton—>setText (QApplication:: translate ("DishWindow", "Set_Fix_Point"
, 0, QApplication :: UnicodeUTF8)) ;
posLabel—>setText (QApplication:: translate ("DishWindow", "Current_Position:"

, 0, QApplication :: UnicodeUTF8)) ;
degreesRadioButton—>setText (QApplication :: translate ("DishWindow" , "
Horizontal_Coordinates", 0, QApplication :: UnicodeUTF8)) ;

azLabel—>setText (QApplication :: translate ("DishWindow", "Azimuth_[deg]:", 0,
QApplication :: UnicodeUTFS)) ;
elLabel —>setText (QApplication :: translate ("DishWindow", "Elevation_[deg]:",

0, QApplication :: UnicodeUTFS));

azEdit—>setInputMask (QString ()) ;

azEdit—>setText (QApplication :: translate ("DishWindow", "0", 0, QApplication
:: UnicodeUTF8)) ;

elEdit —>setInputMask (QString ()) ;

elEdit —>setText (QApplication:: translate ("DishWindow", "0", 0, QApplication
:: UnicodeUTFS8)) ;
azposLabel—>setText (QApplication:: translate ("DishWindow", "Azimuth_=\n"
0, QApplication :: UnicodeUTF8)) ;
elposLabel—>setText (QApplication:: translate ("DishWindow", "Elevation_=\n"
0, QApplication :: UnicodeUTF8)) ;
coordRadioButton—>setText (QApplication:: translate ("DishWindow", "Equatorial
_Coordinates", 0, QApplication:: UnicodeUTFS8));
label 3—>setText(QApplication:: translate ("DishWindow", "Right_Ascension_|[hh
mm:ss [: ", 0, QApplication:: UnicodeUTFS));
label 4—>setText (QApplication:: translate ("DishWindow", "Declination_[deg:mm
:ss]:", 0, QApplication :: UnicodeUTFS8));
rightEdit —>setText (QApplication:: translate ("DishWindow", "0:42:44.3", 0,
QApplication :: UnicodeUTFS)) ;
decEdit—>setText (QApplication:: translate ("DishWindow", "41:16:9", 0,
QApplication :: UnicodeUTF8)) ;
raposLabel—>setText (QApplication:: translate ("DishWindow", "Right_Ascension_
=_\n"
0, QApplication :: UnicodeUTFS8)) ;
decposLabel—>setText (QApplication :: translate ("DishWindow", "Declination_=_\
n"

73

646
647

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

684
685

C.6 ui_dishwindow.h Source Code - GUI Controller

"M 0, QApplication :: UnicodeUTFS8));

tracktimeLabel—>setText (QApplication :: translate ("DishWindow", "Total_
tracking_time_[hh:mm:ss|", 0, QApplication:: UnicodeUTFS));
trackButton—>setText (QApplication:: translate ("DishWindow", "Track\n"

"_Fix_Point", 0, QApplication :: UnicodeUTF8));

dishBox—>setTitle (QApplication:: translate ("DishWindow", "Dish_Mode", 0,
QApplication :: UnicodeUTF8)) ;

D8RadioButton—>setText (QApplication:: translate ("DishWindow", "Dish_
\303\2058", 0, QApplication :: UnicodeUTFS8));

ip8Label—>setText (QApplication :: translate ("DishWindow", "IP:" 6 0,
QApplication :: UnicodeUTFR)) ;

ip8LineEdit —>setText (QApplication:: translate ("DishWindow", "130.238.30.234"
, 0, QApplication :: UnicodeUTF8)) ;

label —>setText (QApplication :: translate ("DishWindow", "Port:", 0,
QApplication :: UnicodeUTFS)) ;

port8LineEdit —>setText (QApplication:: translate ("DishWindow", "5001", 0,
QApplication :: UnicodeUTFS)) ;

D7RadioButton—>setText (QApplication:: translate ("DishWindow", "Dish_
\303\2057", 0, QApplication:: UnicodeUTFS));

ip7Label—>setText (QApplication:: translate ("DishWindow", "IP:", 0,
QApplication :: UnicodeUTFS)) ;

ip7LineEdit —>setText (QApplication:: translate ("DishWindow", "127.0.0.1", 0,
QApplication :: UnicodeUTF8)) ;

label 2-—>setText(QApplication:: translate ("DishWindow", "Port:", 0,
QApplication :: UnicodeUTFR)) ;

port7LineEdit —>setText (QApplication:: translate ("DishWindow", "6001", 0,
QApplication :: UnicodeUTFR)) ;

interRadioButton—>setText (QApplication:: translate ("DishWindow", "
Interferometric", 0, QApplication :: UnicodeUTF8)) ;

connectButton—>setText (QApplication:: translate ("DishWindow", "Connect", 0,
QApplication :: UnicodeUTFS)) ;

disconnectButton—>setText (QApplication :: translate ("DishWindow" , "Disconnect
", 0, QApplication :: UnicodeUTFS8));

scanBox—>setTitle (QApplication:: translate ("DishWindow", "Hemispherical_Scan
", 0, QApplication :: UnicodeUTFS8));

runtimeLabel—>setText (QApplication:: translate ("DishWindow", "Total_scanning
time[hh:mm:ss|", 0, QApplication :: UnicodeUTFS)) ;

scanButton—>setText (QApplication :: translate ("DishWindow", "Start_Scan", 0,
QApplication :: UnicodeUTF8)) ;

logLabel—>setText (QApplication :: translate ("DishWindow", "Controller_log",
0, QApplication :: UnicodeUTFS));

label 5—>setText(QApplication:: translate ("DishWindow", "Scanning_&_Tracking

_Progress", 0, QApplication :: UnicodeUTF8)) ;
progressBar—>setFormat (QApplication :: translate ("DishWindow" , "%p%", 0,
QApplication :: UnicodeUTF8)) ;

stopButton—>setText (QApplication :: translate ("DishWindow", "Stop", 0,
QApplication :: UnicodeUTFS)) ;
resetButton—>setText (QApplication:: translate ("DishWindow", "Reset_Positon",
0, QApplication :: UnicodeUTF8)) ;
menuMenu—>set Title (QApplication:: translate ("DishWindow", "&Menu", 0,

QApplication :: UnicodeUTFS8)) ;
menuAbout—>setTitle (QApplication:: translate ("DishWindow", "&About", 0,
QApplication :: UnicodeUTFS8)) ;
menuHelp—>setTitle (QApplication:: translate ("DishWindow", "&Help", 0,
QApplication :: UnicodeUTF8)) ;
} // retranslateUs

b
namespace Ui {
class DishWindow: public Ui_DishWindow {};
} // namespace Ui
QT _END NAMESPACE

#endif // Ul DISHWINDOW H

74

00~ O Ut W

C.7 ui_helpbrowser.h

Source Code - GUI Controller

C.7 ui_helpbrowser.h

/K ok ok ok ok
*x Form
*%

K3k ok sk ok ok ok ok ok ok oK sk ok sk ok ok ok ok ok sk ok sk ok ok ok sk ok sk ok sk ok ok ok sk ok sk ok oKk ok ok Sk ok ok ok ok ok ok
generated from reading Ul file ’helpbrowser.ui’

xx Created: Wed 8. Nov 14:32:01 2010

* %
* %k

by: Qt User Interface Compiler version 4.6.3

xx WARNING! All changes made in this file will be lost when recompiling Ul file!

* ok ok ok ok kK K

>k 3k 3k 3k 3k 3k 3k 3k 3k sk sk sk sk sk sk sk sk >k sk 3k sk 3k 3k 3k sk sk sk sk 3k Sk ok sk sk sk sk sk sk sk sk 3k sk 3k 3k sk 3k 3k 3k 3k 3k ok sk sk sk sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk ok ok ok */

#ifndef Ul HELPBROWSER H
#define Ul HELPBROWSER_H

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<QtCore/QVariant>
<QtGui/QAction>
<QtGui/ QApplication>
<QtGui/QButtonGroup>
<QtGui/QHBoxLayout>
<QtGui/QHeaderView>
<QtGui/QPushButton>
<QtGui/QSpacerltem>
<QtGui/QTextBrowser>
<QtGui/QVBoxLayout>
<QtGui/QWidget>

QT _BEGIN NAMESPACE

class Ui

{

public:

_ Helpwindow

QWidget xlayoutWidget ;
QVBoxLayout xverticalLayout ;
QHBoxLayout xhorizontalLayout;
QPushButton *homeButton;
QPushButton xbackButton;
QSpacerltem xhorizontalSpacer;
QPushButton *closeButton;
QTextBrowser xtextBrowser;

void

{

setupUi (QWidget xHelpwindow)

if (Helpwindow—>objectName () .isEmpty ())

Helpwindow—>setObjectName (QString :: fromUtf8 ("Helpwindow")) ;
Helpwindow—>resize (450, 500);
QSizePolicy sizePolicy (QSizePolicy :: Expanding, QSizePolicy:: Expanding);
sizePolicy .setHorizontalStretch (0);
sizePolicy .setVerticalStretch (0);
sizePolicy .setHeightForWidth (Helpwindow—>sizePolicy () . hasHeightForWidth ()) ;
Helpwindow—>setSizePolicy (sizePolicy);
Helpwindow—>setMinimumSize (QSize (450, 500));
Helpwindow—>setMaximumSize (QSize (450, 500));
layoutWidget = new QWidget(Helpwindow) ;
layoutWidget —>setObjectName (QString :: fromUtf8 ("layoutWidget")) ;
layoutWidget —>setGeometry (QRect (10, 11, 431, 481));
verticalLayout = new QVBoxLayout(layoutWidget);
verticalLayout —>setObjectName (QString :: fromUtf8 (" verticalLayout"));
verticalLayout —>setContentsMargins (0, 0, 0, 0);
horizontalLayout = new QHBoxLayout () ;
horizontalLayout —>setObjectName (QString :: fromUtf8 ("horizontalLayout"));
homeButton = new QPushButton(layoutWidget);
homeButton—>setObjectName (QString :: fromUt{8 ("homeButton")) ;

horizontalLayout —>addWidget (homeButton) ;

backButton = new QPushButton(layoutWidget) ;
backButton—>setObjectName (QString :: fromUtf8 ("backButton"));

[0)

100

101

102

103
104
105
106
107
108
109
110
111
112
113

DU W N =

C.8 config.ini Source Code - GUI Controller

horizontalLayout —>addWidget (backButton) ;

horizontalSpacer = new QSpacerltem (170, 20, QSizePolicy::Fixed, QSizePolicy
:: Minimum) ;

horizontalLayout —addItem (horizontalSpacer);

closeButton = new QPushButton (layoutWidget) ;
closeButton —>setObjectName (QString :: fromUtf8 (" closeButton"));

horizontalLayout —addWidget (closeButton);

verticalLayout —>addLayout (horizontalLayout) ;

textBrowser = new QTextBrowser(layoutWidget);
textBrowser —>setObjectName (QString :: fromUtf8 ("textBrowser"));
sizePolicy .setHeightForWidth (textBrowser—>sizePolicy () . hasHeightForWidth ())

b
textBrowser—>setSizePolicy (sizePolicy);

verticalLayout —>addWidget (textBrowser) ;

retranslateUi (Helpwindow) ;
QObject : : connect (homeButton, SIGNAL(clicked ()), Helpwindow, SLOT(home()));
QObject :: connect (backButton , SIGNAL(clicked ()), Helpwindow, SLOT(backward ()

))?
QObject :: connect (closeButton , SIGNAL(clicked ()), Helpwindow, SLOT(close()))

)

QMetaObject : : connectSlotsByName (Helpwindow) ;
Y // setupUi

void retranslateUi(QWidget *Helpwindow)

{
Helpwindow—>setWindowTitle (QApplication :: translate ("Helpwindow", "\303\205
SRT_—_Help", 0, QApplication :: UnicodeUTF8)) ;
homeButton—>setText (QApplication:: translate ("Helpwindow", "&Home", 0,

QApplication :: UnicodeUTFR)) ;
backButton—>setText (QApplication :: translate ("Helpwindow" , "&Back", 0,
QApplication :: UnicodeUTFR)) ;
closeButton—>setText (QApplication:: translate ("Helpwindow", "&Close", 0,
QApplication :: UnicodeUTF8)) ;
} // retranslateUt

b
namespace Ui {
class Helpwindow: public Ui Helpwindow {};
} // namespace Ui
QT _END_NAMESPACE

#endif // Ul HELPBROWSER H

C.8 config.ini

[communication |
ipadress8=130.238.30.234
port8=5001
ipadress7=130.238.30.200
port7=5001

76

10
11

13
14

C.8 config.ini

[position |

azimuth=0

elevation=0

right ascension =0:42:44.3
declination=41:16:9

[settings |
beam width=7

7

Source Code - GUI Controller

Bibliography

[1] Onsala Space Observatory, http://www.chalmers.se/rss/oso-en/
[2] MIT Haystack Observatory, http://www.haystack.mit.edu/edu/undergrad/srt/

[3] MIT Haystack Observatory - Antenna specifications,
http: //www.haystack.mit.edu/edu/undergrad/srt/antenna/antenna_ info.html/

[4] JR. Wertz & W.J. Larson, Space Mission Analysis and Design 3rd Edition, p.571, Space
Technology Library, New York, 1999.

[5] John D.Kraus, Radio Astronomy, 2nd Edition, Cygnus-Quasar Books, 1986.

[6] SALSA Onsala — Such A Lovely Small Antenna,
http://www.chalmers.se/rss/oso-en/observations/2-3-m-lab-antenna-salsa/

[7] Arecibo Radio Telescope, hitp://www.naic.edu/
[8] SETI Institute, http://www.seti.org/

[9] Max Planck Institute for Radio Astronomy - Radio Telescope Effelsberg,
http: //www.mpifr.de/english/radiotelescope /index.html/

[10] SpaceDaily - China To Build World’s Largest Radio Telescope,
http://www.spacedaily.com/reports/China_ To Build_ World_ Largest Radio_ Telescope 999.html/

[11] R. Nan, B. Peng (2002) Kilometer-square Area Radio Synthesis Telescope-KARST,
http://www.skatelescope.org/uploaded/8481 17 memo_ Nan.pdf

[12] LOFAR,
http://www.lofar.org/astronomy/eor-ksp /redshifted-21cm-hydrogen-line /redshifted-21cm-
hydrogen-line/

[13] C.L. Carilli, D.E. Harris, Cygnus A - Study of a radio galazy, p. 88, University Press, Cam-
bridge 1996.

[14] National Centre for Radio Astrophysics - Pune University, India,
http://gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/ WEBLF/LFRA /node20.html/

[15] GTK+, http://www.gtk.org/
[16] Qt Development Frameworks, http://qt.nokia.com/

[17] Jasmin Blanchette, Mark Summerfield, C++ GUI Programming with Qt 4, Second Edition,
Prentice Hall, February 04, 2008.

[18] Astronomy Eduction at the University of Nebraska-Lincoln - Celestial Equatorial Coordinate
System,
http://astro.unl.edu/naap /motionl /cec_ units.html/

78

BIBLIOGRAPHY BIBLIOGRAPHY

[19]
[20]

[21]
22]

23]
[24]
[25]

[26]

27]

(28]
[29]
[30]
31]

David M. Pozar, Microwave Engineering 3rd Edition, p. 496, John Wiley & Sons, 2005.

Committee on Radio Astronomy Frequencies - Status of interference problems in Sweden,
http://www.craf.eu/swe.htm#21c/

David M. Pozar, Microwave Engineering 3rd Edition, p. 617, John Wiley & Sons, 2005.

Mike Curtin and Paul O’Brien, Phase Locked Loops for High-Frequency Receivers and
Transmitters-3, Analog Dialogue — Volume 33, Number 7, July/August, 1999
http://www.analog.com/library/analogDialogue /archives/33-07/phase3/index.html/

Microchip Technology Inc., hittp://www.microchip.com/
SSB-Electronics, http://www.ssb.de/pdfs/6060 Aircom%20Plus_ en.pdf

Hangzhou Hongsen Cable Co. - RG402U Data Sheet,
http: //www.hongsencable.com /pdf%5C20154256.pdf

Paul McCormack, National Semiconductor Corporation, Effects and Benefits of Undersam-
pling in High-Speed ADC Applications, Design & Elektronik, Germany, May 24, 2004.

Jim Lesurf, Radio & Coherent Techniques, Part 8 - Sky Noise, Fig. 8.5
http://www.st-andrews.ac.uk/ www_pa/Scots Guide/RadCom /part8/page3.html/

LOIS receiver software - Sensor GUI, http://www.lois-space.net/software.html/
CelesTrak - NORAD Two-Line Element Sets, http://celestrak.com/NORAD /elements,/
Radio Astronomy Supplies, http://www.nitehawk.com/rasmit/jml0.html/

Mini-Circuits, http://www.minicircuits.com/

79

