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Fig. 1. Schematic cross section of the HBT under investigation (a) with key dimensions modified from generation to generation (b).
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Abstract

A SiGe HBT technology featuring fT/fmax/BVCEO=300GHz/
500GHz/1.6V and a minimum CML ring oscillator gate delay 
of 2.0 ps is presented. The speed-improvement compared to 
our previous SiGe HBT generations originates from lateral de-
vice scaling, a reduced thermal budget, and changes of the 
emitter and base composition, of the salicide resistance as well 
as of the low-doped collector formation.

Introduction

Still growing needs for faster data communication rates and 
new application areas up to 1 THz raise the question how far 
traditional semiconductor devices can satisfy these markets. 
The European project DOTFIVE addresses this challenge by 
striving towards SiGe HBTs with a maximum oscillation fre-
quency fmax of 500 GHz, a value that exceeds the performance 
of best production technologies available at the project start in 
2008 by about a factor of two. On this way, new device con-
cepts and an aggressively scaled double-polysilicon technolo-
gy facilitated a new record value for CML ring oscillator (RO) 
gate delays τ of 2.5 ps (1) and fmax values of 400-425 GHz (2), 
(3), (4). Based on these device capabilities, new levels of high-
frequency circuit performance were realized with respect to 
power consumption (5), noise figure (6), complexity (7) or out-
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Here, we demonstrate further substantial progress of the 
high-speed performance of SiGe HBTs achieving the target 
level of the DOTFIVE project. The reported performance im-
provement of our HBT module with differential base epitaxy 
and self-aligned emitter base architecture (9) is based on lateral 
device scaling as well as modifications of the base profile, the 
annealing regime, the salicide sheet resistance, the emitter dep-
osition, and the selectively implanted collector. Starting from 
the reference status of this technology (1st generation D51) 
with fmax/τ~300GHz/3.1ps, we describe the modifications led 
to an intermediate level (2nd generation D52) of fmax/
τ~400GHz/2.5ps after the half period of DOTFIVE and finally 
to the current version D53 with fmax/τ~500GHz/2.0ps.

Device Fabrication

The basic HBT process flow was presented first in (9). Gen-
eral features of the device structure are sketched in Fig. 1. A re-
cent version of this HBT module is implemented in our 0.13µm 
BiCMOS technology corresponding to the initial DOTFIVE 
generation D51 (10). The HBT development of this work is 
performed in our 0.25µm SG25H1 BiCMOS technology (11)
environment, including shallow trench isolation, a deep-
trench-free implanted collector well, a poly-resistor, 5 metal 
layers, and a 1fF/µm2 MIM capacitor. The technological mod-
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Fig. 2. TEM cross sections of the 1st (D51) and the 3rd (D53) HBT generation.

Table 1. Process changes for the 2nd (D52) and the 3rd (D53) process generation. Table 2. Changed sizes of key HBT dimensions.
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ifications introduced for D52 and D53 are listed in Table 1 in-
cluding the implications for the device parameters. For D52 
and D53, the Ge content and the B dose of the SiGe:C base pro-
file were increased in such a way that the collector current den-
sity was maintained while lowering the base sheet resistance. 
The final spike anneal was reduced from 1100°C to 1070°C for 
the migration to D52 and further to 1050°C for the D53 gener-
ation. Also the width of the emitter-base oxide spacer was 
scaled down from generation to generation by fine-tuning the 
combination of wet and dry etching applied to form the emitter-
window inside-spacers. Moreover, the salicide sheet resistance 
was reduced by 50% and a higher emitter doping was estab-
lished for D52 and D53. Additionally, the selectively-implant-
ed collector (SIC) formation was changed in the D53 flow. 
Originally, it was implanted through the base layer after open-
ing the emitter-window. Now, the SIC is implanted before base 
deposition applying the emitter-window layer. TEM pictures of 
our 1st and 3rd SiGe HBT generations document a significant 
scaling of important device dimensions (Fig. 2). For example, 
30.M10-689
the emitter-window width was shrunken by about 33% and the 
width of the collector window by about 45%. Device dimen-
sions relevant for the RF parameters are summarized in Table 2
for the different device generations. 

RF Characterization

Because of the relevance for this work, we describe first the 
techniques used for the RF characterization. To extract the cut-
off frequency fT and the maximum oscillation frequency fmax, 
s-parameters were measured on wafer up to 110GHz (network 
analyzer 8510 XF). SOLT calibration with an impedance stan-
dard substrate (ISS) precedes the HF measurements. The qual-
ity of the extraction procedure for fT and fmax is illustrated in 
Fig. 3. fT and fmax extrapolated from the small-signal current 
gain h21 and the unilateral gain U, respectively, with -20 dB/
frequency decade are plotted vs. the extrapolation frequency up 
to 110 GHz. The fT, fmax values given in other diagrams are de-
termined at 40 GHz. The circle fit of s11 for a device operating 
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Fig. 3. Transit frequency fT and maximum oscillation frequency fmax

extrapolated from various frequency points with -20dB per frequency 
decade measured for 8 single emitter devices in parallel and a multi-
emitter HBT with 8 emitters. Total effective emitter area for both is 

8x(0.12x0.96)µm2. T=300K.

Fig. 4. Measured s11 at VBE=0.92V from 1to 110GHz and circle fit plotted 

in a Smith chart for a 8-emitter device prepared in D53 (left). VBE depen-

dence of RB+RE extracted from s11 circle fit for the HBT generations 

D51-D53 (right).
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VCE=1.5V
at peak fT is used to quantify RB. An example including the 
bias dependence of RB is presented in Fig. 4. Here, we do not 
subtract RE because of missing standard measuring conditions. 
For the CML ring oscillator (RO) measurements, we used a 
configuration with 53 stages at 300mV voltage swing as in 
(12).

Device Results

For the HBT generations D51-D53, Gummel and output 
characteristics as well as fT(jC) and fmax(jC) curves are shown 
in Fig.s  5, 6 and  7. In these graphs the current values are nor-
malized to the effective emitter area AE,eff to facilitate an easy 
comparison. Device parameters in Table 3 indicate a continu-
ous decrease of normalized CBC and RB values and an increase 
of fT from D51-D53 explaining the improved fmax values and, 
partially, the reduced gate delays τ (Fig. 8). As can be seen in 
Fig. 7, for D53 the fT and fmax decay and therefore the onset of 
the Kirk effect is shifted towards higher current densities. An 
enhanced dose of the selective collector implant (SIC) is re-
sponsible for this effect delivering an additional reduction of 
the minimum gate delay (Fig. 8). The new base profile with 
higher Ge content and lower RSBi combined with a lower final 
spike anneal, introduced first in D52, affects positively not 
only RB and fT. It decreases the current gain due to a higher IB
resulting in a higher BVCEO compared to D51. From D52 to 
D53 the process sequence of the SIC was rearranged (Table 1). 
Beside the further reduced RTP spike temperature, this change 
has contributed essentially to improve further RB and fT and 
consequently fmax. Due to the absence of a SIC implant through 
the base and slightly higher ICs, BVCEO was lowered to 1.6V. 
The effect of only lateral scaling on fmax can be estimated from 
Table 3. It includes also data of HBTs fabricated in D53 using 
the relaxed layouts of D52 and D51. The data indicate that 
about 30% of the achieved fmax improvement can be attributed 
to device scaling while about 70% of the advance are due to the 
vertical doping profile and reduced specific resistances. 
30.
Conclusions

In conclusion, we have demonstrated that fmax values of 
500GHz, fT of 300GHz and gate delays of 2ps can be realized 
in a SiGe HBT technology. This performance demonstrates the 
potential of SiGe HBTs for arising applications such as sub-
mm-wave imaging and ultra-high data rate communications.
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Fig. 5. Gummel plots of 8-emitter devices normalized to the effective emitter 
area AE,eff (see Table 3) for the HBT generations D51, D52, and D53.

Fig. 6. Output characteristics of 8-emitter devices normalized to the effec-
tive emitter area AE,eff (see Table 3) for the HBT generations D51 (dot-

ted), D52 (dashed), and D53 (solid). 

Fig. 7.  Transit frequency fT and maximum oscillation frequency fmax vs. 

collector current normalized to AE,eff for the HBT generations D51-D53. 

Deembedded small-signal current gain h21 and unilateral gain U vs. fre-
quency were used for extrapolation of fT and fmax at 40GHz with -20dB 

per frequency decade at VCE=1.5V, T=300K.

Fig. 8. CML ring oscillator gate delay τ vs. current per gate normalized to 
AE,eff for oscillators consisting of 53 stages with single emitter HBTs 

fabricated in D51-D53. Measured at VEE=-2.5V, ∆V=300mV and 

T=300K.

Table 3. Device parameters of the HBT generations D51-D53. In addition, parameters are listed for devices with D53 process flow and typical layout (LO) 
dimensions of D51 and D52.

D51 D52 D53

Unit Measuring conditions LO53 LO 52 LO51

AE, eff µm2 8x(0.18x0.92) 8x(0.16x0.90) 8x(0.12x0.96) 8x(0.145x0.89) 8x(0.165x0.90)

fT GHz VCE=1.5V 235 250 300 300 300

fmax GHz VCE=1.5V 300 400 500 490 440

τ ps VEE=-2.5V, ∆V=300mV 3.1 2.5 2.0 2.2 2.25

BVCEO V IB reversal, VBE=0.7V 1.7 1.8 1.6 1.6 1.6

BVEBO V jE=10µA/µm2
2.0 1.45 1.7 1.7 1.7

BVCES V jC=0.5µA/µm2
5.1 5.7 5.2 5.2 5.25

RExAE, eff Ω µm2 flyback 2.38 2.44 2.12 2.42 2.72

(RB+RE)xAE, eff Ω µm2 s11 circle fit, VBE=0.92V 15.6 10.5 8.4 8.6 10.3

CCB/AE, eff fF/µm2 s parameter 18.0 16.4 15.1 17.1 16.6

CBE/AE, eff fF/µm2 s parameter 16.9 18.9 21.8 20.9 19.4

RSBi kΩ 3.5 2.3 2.6 2.6 2.6
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