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TheBasel problemis a problem in mathematical analysis with relevance to number theory, first posed by Pietro Mengoli in 1644 and solved by
Leonhard Euler in 1735. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate
fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up years later by Bernhard Riemann in his
seminal 1859 paperOn the Number of Primes Less Than a Given Magnitude, in which he defined his zeta function and proved its basic properties. The
problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

The Basel problem asks for the precise summation of the reciprocals of the squares of the natural numbers, i.e. the precise sum of the infinite series:

The series is approximately equal to1.644934 A013661. The Basel problem asks for theexactsum of this series (in closed form), as well as a proof

that this sum is correct. Euler found the exact sum to beπ
2/6 and announced this discovery in 1735. His arguments were based on manipulations that

were not justified at the time, and it was not until 1741 that he was able to produce a truly rigorous proof.
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Euler's approach

Euler's original derivation of the valueπ2/6 essentially extended observations about finite polynomials and assumed that these same properties hold true
for infinite series. Of course, Euler's original reasoningrequires justification (100 years later, Weierstrass proved that Euler's representation of the sin-
function as an infinite product is correct, see: Weierstrass factorization theorem), but even without justification,by simply obtaining the correct value,
he was able to verify it numerically against partial sums of the series. The agreement he observed gave him sufficient confidence to announce his result
to the mathematical community.

To follow Euler's argument, recall the Taylor series expansion of the sine function

Dividing through byx, we have

Now, the roots (intersections with the x-axis) of sin(x)/x occur precisely at where Let us assume we can express this
infinite series as a (normalized) product of linear factorsgiven by its roots, just as we do for finite polynomials:
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If we formally multiply out this product and collect all thex2 terms (we are allowed to do so because of Newton's identities), we see that thex2

coefficient of sin(x)/x is

But from the original infinite series expansion of sin(x)/x, the coefficient ofx2 is −1/(3!) = −1/6. These two coefficients must be equal; thus,

Multiplying through both sides of this equation by gives the sum of the reciprocals of the positive square integers.

The Riemann zeta function

The Riemann zeta function is one of the most important functions in mathematics, because of its relationship to the distribution of the prime
numbers. The function is defined for any complex numbers with real part > 1 by the following formula:

Takings = 2, we see that is equal to the sum of the reciprocals of the squares of the positive integers:

Convergence can be proven with the following inequality:

This gives us the upper bound , and because the infinite sum has only positive terms, it must converge. It can be shown that has a nice
expression in terms of the Bernoulli numbers whenevers is a positive even integer. With :

A rigorous proof using Fourier series

Let over the intervalx ∈ (–π,π). The Fourier series for this function (worked out in that article) is

Then, using Parseval's identity (with ) we have that

,

where

for n ≠ 0, anda0 = 0. Thus,
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for n ≠ 0 and

Therefore,

as required.

A rigorous elementary proof

This is by far the most elementary well-known proof; while most proofs use results from advanced mathematics, such as Fourier analysis, complex
analysis, and multivariable calculus, the following does not even require single-variable calculus (although a single limit is taken at the end).

For a proof using the residue theorem, see the linked article.

History of this proof

The proof goes back to Augustin Louis Cauchy (Cours d'Analyse, 1821, Note VIII). In 1954, this proof appeared in the book of Akiva and Isaak
Yaglom "Nonelementary Problems in an Elementary Exposition". Later, in 1982, it appeared in the journalEureka, attributed to John Scholes, but
Scholes claims he learned the proof from Peter Swinnerton-Dyer, and in any case he maintains the proof was "common knowledge at Cambridge in the
late 1960s".

The proof

The main idea behind the proof is to bound the partial sums

between two expressions, each of which will tend toπ2/6 asm approaches infinity. The two expressions are derived from identities involving the
cotangent and cosecant functions. These identities are in turn derived from de Moivre's formula, and we now turn to establishing these identities.

Let be a real number with , and letn be a positive odd integer. Then from de Moivre's formula and the definition of the cotangent

function, we have

From the binomial theorem, we have

Combining the two equations and equating imaginary parts gives the identity

We take this identity, fix a positive integer, set and consider for . Then is a multiple of and therefore

a zero of the sine function, and so
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for every . The values are distinct numbers in the interval (0,π/2). Since the function is one-to-one on this interval,
the numbers are distinct forr = 1, 2, ...,m. By the above equation, thesem numbers are the roots of themth degree polynomial

By Viète's formulas we can calculate the sum of the roots directly by examining the first two coefficients of the polynomial, and this comparison shows
that

Substituting the identity , we have

Now consider the inequality . If we add up all these inequalities for each of the numbers , and if we use the two

identities above, we get

Multiplying through by (π/(2m + 1))2, this becomes

As m approaches infinity, the left and right hand expressions each approach , so by the squeeze theorem,

and this completes the proof.

Packing Squares with Side 1/n

The solution to the Basel problem is related to packing squares with side length of . The question that is asked is "What is the smallest rectangle that

can contain the squares asn approaches infinity?"[1] One bound to the answer is dependent on one rectangle side,, to be the sum of the largest two
squares sides summed together,

.

The other rectangle side,, depends on the order of remaining squares. However, we knowthat total area,A, of the squares (minus the square with
n=1) is:

.

Dividing the square's total area by the one known rectangle side leaves the ideal rectangle side length,

A233699.

The current packing record holder is Marc Paulhus, who developed a packing algorithm.[2]

See also

Riemann zeta function
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