CALCULATION OF ATTENUATION IN WAVE GUIDES*
By S. KUHN.}

(The paper was received on the 20th February, 1946.)

SUMMARY

This paper, based on work carried out in 1941-1942, furnishes
tables and curves giving

(a) field cquations for rectangular and circular wave guides, and ]

(b) attenuation constants of wave-modes likely to be met in practice
in thesc guides.

The text explains the derivation of the tables and curves.

It should be noted that the approach to the problem uses wave-
engths to describe both the frequency (A,) and the guide itself (Ac,).
Wavelengths refer always to the dielectric which fills the guide. The
free-space wavelength is not used at all.

Field amplitudes (Tabie 1) are expressed in terms of power carried
by a wave. To obtain comprehensive formulae, the concept of
“characteristic density” of encrgy, or power, is introduced. Other
factors determining field amplitudes enter into the equations in the
form of ficld impedances.

A general formula (Table 2) is produced for the attenuation constant
ay, caused by losses in the wall-metal. This formula applied to any
mode of wave in rectangular or circular guide, and the values of
coefficicnts, which are to be used in a particular case, are given in the
table. The curves shown in Fig. 1-4 are of a general character, and
may be used for any size of guide and at any frequency. Figs. 1 and 2
deal with the attenuation constant «, of air-filled copper guides in
the transmitting region. Fig. 1 shows attenuation of Hoy, Hi1 and
Fi1-modes in a rectangular guide, and Fig. 2 shows attenuation of
the lowest modes in a circular guide. The curves show the relation-
ship between a quantity (ayD3/2), which is independent of the actual
values of linear dimensions, and the ratio A./D, which is the only term
influenced by frequency.

Fig. 3 gives the attenuation constaat oy due to loss in the dielectric
filling of a guide, and shows the relationship between a quantity
(%d — Aer), again independent of the values of linear dimensions, and the
ratio A./A., through which the frequency affects the attenuation. The
curves are drawn for a few loss-angles, 8, of the dielectric and are
applicable to any wave-mode in any guide, in both the transmitting
and attenuating regions.

Fig. 4 is a counterpart to Fig. 3, showing the values of phase con-
stant f} instead of attenuation constant ocg.

(1) INTRODUCTION

During the year 1941-2, information about wave guides in
general, and their attenuation in particular, was scattered
throughout various publications (the book by H. R. L. Lamont
on wave guides appeared late in 1942), and a need was felt for
having a comprehensive picture of phenomena in a wave guide,
presented in a form directly applicable to engineering problems.
Also, some means were wanted which would enable the attenua-
tion of a guide at any frequency to be obtained readily. Conse-
quently two A.S.E. reports were written by the author, with the
intention of supplying this information.

The paper deals with the two common forms of wave guide—
rectangular and circular. The Tables give the field equations
for any mode of wave propagated in the guide, and the attenua-
tion curves have been calculated for the lowest modes in air-
filled copper guides. The curves present relationships between
two quantities: one determining the attenuation of a guide and
the other depending on frequency and on the dimensions of the
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guide cross section. These quantities have been chosen so as to
obtain curves applicable to any frequency and to a guide of any
dimensions. This is why the curves directly give the numerical
value of attenuation in any case encountered in practice.

(2) SYSTEMS OF UNITS, QUANTITIES AND NOTATIONS
(2.1) Units

The Gaussian systems of units has been used throughout the
calculations. However, the final field equations are presented
in a form which would give a correct answer either in the Gaussian
or in the M.K.S. rationalized system. To achieve this, the
characteristic density P’ of energy, or power, which enters into
the formulae, has to be obtained differently in each system of
units.

(2.2) Frequency

The way of describing the frequency has been chosen after
much consideration. Usually, in radio engineering, this essential
characteristic of a wave is given either as the frequency itself, or
as the wavelength, /\0, in free space. In wave-guide technique
the linear dimensions of the guide play an important role, and
hence it is rcasonable to use wavelength as the factor describing
the frequency of a wave. But, if a guide is filled with a dielectric
(1, 1) and not with air, the wavelength in free space does not
appear at all in guide phenomena; the corresponding relevant
wavelength is that which would appear in the unbounded di-
electric, «, . For these reasons, neither the frequency f nor the
wavelength A, in free space is used in the paper; the frequency
is described in terms of the wavelength A, in the unbounded
dielectric (x, ) which fills the guide. This wavelength is given
by the formula:

¢

A=
€ flep)t

where c is the velocity of light in free space: « and u are in the
Gaussian system of units.

The only case in which the frequency is explicitly mentioned
is that dealing with variations of fields in time; in this case the
term w has the usual meaning: w = 27f.

(M

(2.3) Wavelength

In the guide, there always exist spatial oscillations of power
in the transverse direction of the guide. The actual wavelength
of these oscillations for a given wave-mode is entirely determined
by the metallic boundaries of the guide, i.e. by the shape and
dimensions of the guide cross-section. Hence, if the length of
the transversely-directed waves actually existing in the guide
dielectric is considered, this length will depend neither on fre-
quency nor on the properties of the dielectric.

For propagation along a guide to be possible, the wavelength
A, in the unbounded diclectric must be smaller than the wave-
length of these transverse waves. Therefore, the wavelength of
the “transverse’’ waves in the dielectric may be called the critical
wavelength, A_, of the guide.

cr?

The wavelength A, along the guide depends on the wavelength
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A, in the unbounded dielectric and on the critical wavelength A,
of the guide; through A, it depends on the properties K, w of
the dielectric and on the frequency used, and through A, on
the shape and dimensions of the guide cross-section and on the
mode of the wave.

The relationship between these three wavelengths follows from
the general solution of Maxwell’s equations, viz.,

122 = 122 + 1/X2 ®

(2.4) Impedance

The ratios of electric and magnetic fields responsible for the
propagation of power are given in terms of the field impedance, Z.

Two main kinds of impedance are used:—

(a) The specific (sometimes called intrinsic) impedance, Z,, of
the guide, which is the ratio of transverse components of the
electric and magnetic fields, responsible for propagation along
the guide, and

(b) the transverse impedance, Z,, of the guide, which is the
ratio of those components of fields which are responsible for
transverse oscillations.

The specific impedance Z, of the unbounded dielectric «, u
is also used. This is the ratio of the electric and magnetic fields
of a simple plane wave propagated in the dielectric; Z, is given

by the formula
Z, = (it €)

The relationship between impedances Z,, Z,, and Z, for an
H-wave is different from that for an E-wave
In the case of an H-type of wave,

= (Y 2«
2= (K) A @)
~ (B
z,= (%) )
and hence, by equation (1), we have the relationship,
122 = 1]Z2 + 1]Z2 6)
In the case of an E-type of wave,
~ (M) A
Ze= (K) A @
u\t A
= () X ®
and equation (1) gives
22=22% + 72 ®

If the Gaussian system of units is used, where « and u are
dimensionless and where, for vacuum, «y = po = 1, these impe-
dances are also dlmensxon]ess and the specxﬁc unpedance of
free space becomes:

Zy=1 (10)

In the M.K.S. rationalized system, « is expressed in farads/metre
and p in henrys/metre, and hence the impedances in question
are obtained in ohms. For vacuum, or air,

ko= (1/307) . 10~? farad/metre; pq = 4o . 10~7 henrys/metre (11)
and the specific impedance of free space becomes:
Zy = 1207 ohms (12)

The specific impedance Z, of a dielectric («, 1) can be written in
the M.K.S. system as:

. (f(_’“)ir - 12017(’_:/,_:‘09)* ohms . (13)
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(2.5) Power Carried by Wave

The total power P carried by the wave along the guide is taken
as the factor determining the actual values of fields in the guide.
This has been considered useful for practical purposes, since in
practice it is usual to postulate that some power passes through
a guide, and then to find the fields, and particularly the maximum
values of electric field, appearing in the guide. Or alternatively,
when some admissible electric field in the dielectric is assumed,
one wishes to know quickly what is the maximum power which
could be transmitted in the guide. However, the total power P
does not enter into the field equations directly; instead, another
quantity, P’, is used, which in a given guide and for a given
mode of wave is proportional to P. The quantity, P’, may be
called the “‘characteristic density”’ either of energy or of power,
depending on the system of units used.

To obtain the characteristic density, P’, the total power P is
to be divided by the “reduced” cross-section of the guide. The
“‘reduced”’ cross-section is obtained by multiplying the true cross-
sectional area S by a coefficient, k, the value of which depends
on the shape of the cross-section and on the mode of wave con-
cerned. Values of coefficients & are given in Table I for each
type of wave.

In the ordinary (unratlonahzed) Gaussian system of units the
value of the total power is “irrationalized’ by putting the factor
47 in the expression for P’. This quantity then becomes:

= (4m/c)(P/k,S) ergsfcm3 . (14)
and its physical dimension is that of energy-density.
In the M.K.S. rationalized system it becomes
= Pk S watts/m? 15

with the dimensions of power-density.

(2.6) Wave-Mode Notation

The name of H-wave is given to a wave in which the longi-
tudinal component of the electric field is everywhere zero. The
more recently adopted name for such a wave is the “transverse
electric’” wave, T.E. Similarly, if the longitudinal component
of the magnetic field is everywhere zero, the wave is called an
E-wave, the new name for which is ““transverse magnetic’’ wave,
T.M.

A particular mode of wave wnthm each of the families is
determined by subscripts » and m, added to the letters H and E.
The meaning of these subscripts is different in the cases of
rectangular and of circular guides. The subscript n denotes
the number of half-periods of field variation along the height a
of the cross section, and the subscript m, the number of such
half-periods along the width b (a and b are the internal dimensions
of the wave guide).

In this paper it is assumed that the guide is viewed in such a
way that 2 is not greater than m.

As a result, a may be smaller than, equal to, or greater than b.
Both n and m are integral numbers. In the case of an H-wave
either one of the subscripts can be equal to zero. The mode
H, , then becomes Hy, The lowest and most commonly
used mode of an H-wave in a rectangular guide will be denoted
by Hy,, which agrees with the old notations adopted by some
writers (e.g. Barrow and Chu), but disagrees with notations used,
for instance, by Lamont. It is clear that in the case of this
mode the larger side of the cross-section should be taken as the
width, b, of the guide.

The similar mode, which would have no variation of the fields
along the larger side of the cross-section, would have the same
notation, Hy,, the difference being that the guide should be
orientated so as to make the width b smaller than the height a.



665

CALCULATION OF ATTENUATION IN WAVE GUIDES

KUHN

=75
2 x L9 R< A
il =:z=377+%Z H*Amvﬂ

wmnWiw

F=fy 0uiy),
$=°Y 0=u10y
a7z _ 3z

= &= = K Sand -ll*
T 11 ~R§Axv Z

0 7 u pue 1339)ur UL U

.\u< 1 1
- —q v
2 q . oy g\ ﬁ\ % 1 a< 7
AN _ X L op o 0
I 1 1 9T L4 WK“N.R.T% |Wn< W.Hcf\
! 1 I g2 (74
X uu] s00 A.In uis A xz °z_ ‘g :2+xl?vm~l 503 a.l! urs *AxN\vaNN -=2
(ror+xgie AT “ 9z Z
BUN Q/\ 7y P
A:% +x2 T VQN] urs >.| S00 ARN aN 9 A~a.s+ . MIM.T prs ars pail ™ $02 §(*: \kNVbN 2
z bl z 0=%*32
mu J A:_:.+k slvww|< urs A.Mm ars A\NN DZlf=* 2 m. o .
m X\ 40 .m A~3.\+«H¢I vmulw us A‘N $033(*Z.d7) _N twsl H
@ teorpx Y S| a1s €. 500 A]N Z_zy z g
3.-.+x].\lv M vy
A L N \ANN mN A.Qﬂ\ - V ENN.
2 X 500 urs $(*Z, =
=y hid 2 5 Aa« uis ARN °Z_ _ay ?s?anINT £T {2407 “z H
of4+x X wN
A. g v \.d/ 9z o o
a4 N|mou>\lmoo X7, d)—= =%
0="H Qs.iaulm.T iz 7 C NmN ; ‘H

0 = u 10 ‘1989)u1 UR U

ABM-TUYg

SABM-WUEY

'S3NIWNT3D Ul IPINS JO SUOISUSWIP IPISUI = q pue v
‘wSu

‘0 & w pue 182Ul Ue = w

‘13U Ue = ¥

w3)sAs 91¥UTPIO-02 UeISHILY) Papuey-1ysryg

IpMD ABA\ JeM3ue)Ooy

(SASSOT LNOHLIM) SIAIND TAVA\ ¥VINOUL) ANV ¥VINONVIOTY NI SHAVM

I 31qe],

Wiy anv U ONITTIAVY], 4O SNOLLVNDY aidl]




CALCULATION OF ATTENUATION IN WAVE GUIDES

KUHN

666

*WIDYSAS JIRUIPIO-03 [RIIPULAD papury-3ySIy

L28-0T ﬁ o1p-61 | 096-L1 | 90Ly-91 60£6-41 | S i 8-Ll [43°) S 98-¥1 90LY-91 - S
919-L1 ! $2T-91 96L-¥1 | LETE-ET SI6L- 11 4 6-s1 9-v1 e , 0L-11  LETE-€1 | 14 ~
€L€-¥1 1 Ll0-€1 | 07911 SELT-01 L€59-8 £ Lzt P11 $96-6 | _vesw | seLi-or | £
9011 | 09L-6 | upm | 9si0-L 1025 4 €6 | stos | o9 | oses h‘mﬁ.hl‘_ LA
98S-L I 6LE-9 _ SEI-S r LIEB-€ 8Y0y-T I €€-S [ {17234 B ¥50-€ [oTbBl AL Ny 1
v € oz 1 0 ——u v T 1 I
w'ug jo sanjeA wug 10 SON[BA
4 ~ wug U_
e ez S =/ - - . =¥ = i
(@ug)yI—ip ¥ 0/~ui0y —MNA u v 1 ® :M» ¥ 0 Fuloj F .
(4 sy ﬂ A
“°3)}r =y 0=uiog (B =4 o0=wulioy
¥\3.H..NN.1»\N|,G k:.xlmlleN NN
| R SR
wug
- 40 pu— ] a Y] w tm
Z P X =
¥ *Axv % ﬁmiv ¢ s i) =72 :« : L) =wz p =y
[4 r [4 — b
(ror2y— )9 uss > (E)zr=22 (o<t )00 HZAO = 22
ug A E:.wv:r:\.._,. ArL: ug ~I=\. uy AHE ug Ji+up — A S:Mvn!:\.
4T 4
A:oz.kw lvwﬂ: 509 £ A».N Zl—-= ‘2 ~3\+kB¢I agu wis $ZdO ="
Toaug AEE ug Ji+up Al\lE.:M —I:\.* . A v AEE:M I+4p 4 Ah E.mw 1—4p
¥rd 4T
m ~3\+RH¢IV.‘.~$: 00 o :MV:\. A:..NN = k%w m z Xz
.m 2 J _str»\.r\‘m\l vwow: urs AkN\nNNv \. N&
=4 N B A R Py :M 1Hup o N.E.:MV—I:\.
@ A 3¢u s02 = ¢y e 7 s
softxZi-) Pu p dt/
Fwug +=\. S:Mvﬁla\. v vN
4
i A:.i;.ﬁ.\lv%a 503 2 !MA«N\RS f—="H
. N 4N 1z ' :M 1 4. 2\. E EMVN I:N.
o T \3Pu uIs =g 1z p
A:a.\ﬁk .\(.v AP, I #\.dT/’
u£7 O w RNVA.T:\- + A w Ehnw I-E\ 7
1 |2
39U SOd u Swv_c. 3(* N\MNY H
0= RNN L ] A;SI..X \Iv ﬂ a7 A
QABM-TITY AABM-TILY
J ‘¢ (4)7r iuonenba Jo 100 Yl-ur - w'ly ") A e PpUB UAEMUIUR e
G = @ (dyur 3o oABEALD 1535 = (), 1 B e et S
“0 = (d)*f :uonenbd JO JOOI Yy~ - w'uy ‘a1eUIplo-0d £ 3yl Suole
. U ISPIO JO pUTY 3SIY Ay} Jo uonduny [assag - (d)vr NOUPPWITSY IAJANRIP ADINT [ruimur p

P dNEA\ I
(ponuyuod) 1 IqeL




KUHN: CALCULATION OF ATTENUATION IN WAVE GUIDES

In the case of an E-wave neither of the subscripts can be equal
to zero.

Field equations are given in right-handed Cartesian co-
ordinates; the origin of the system is placed in one of the corners
of the guide cross-section so that the width b falls in the positive
direction of the z-axis, the height a in the positive direction of
the y-axis, and the axis of the guide extends in the direction of
the x-axis. The signs of fields imply the propagation of power
along the guide in the positive x-direction.

Transverse oscillations occurring in a rectangular guide are
considered separately in the y- and in the z-directions. The
corresponding wavelengths, measured in the dielectric filling the
guide, are called )«a and )«b. The values of these wavelengths are
determined by the guide dimensions, a and b, and by the indices
n, m, of the mode concerned. The formulae are:

A, = 2aln and A, = 2b/m (16)

The relationship between A,, A, and the critical wavelength A,
of the guide follows from the general solution of Maxwell’s

equations, viz.:
A2 =122 4+ 122 . (17)

As a logical consequence of this treatment of transverse oscilla-
tions, two kinds of transverse impedance of the guide are intro-
duced; one, called Z,, gives the ratio of fields responsible for
oscillations in the y-direction, and the other, Z,, gives the similar
ratio for oscillations in the z-direction.

The values of these impedances differ for an H-type wave
from those for an E-type wave.

For an H-type of wave, Z, and Z, are given by

Z, = (I OJN); Zy = (uldd A, IN,) (18)
and the relationship between them is:
1Yz =1z2+ 12z . . . . 19
However, for an E-type of wave, they are given by
Z, = (ul RO JN); Z, = (ul3*\IA) 20)
with the following relationship:
Z2=22+272. @n

The internal diameter of a circular guide is designated d.

Subscripts n and m describing a mode within the H- or E-
families of waves have here the following meanings. The sub-
script n denotes the number of full periods of field variation,
counted around the circumference of the guide cross-section.
The subscript m characterizes field variations along the radius of
the cross-section. It is-equal to the number of field maxima and
minima between the centre and the circumference of the cross-
section for H- and E-type waves, respectively. Both » and m
are integral numbers; the lowest possible value of » and m being
zero and one, respectively. It is usual to omit the subscript m
altogether, if its value is equal to 1; however, in the present paper,
the subscript m is always indicated. .

Field equations are given in right-handed cylindrical co-
ordinates x, r, ¢, with the origin of the system at the centre of
the guide cross-section. The signs of field imply the propagation
of power along the guide in the positive x-direction.

¥

(2.7) Attenuation

Two very different kinds of attenuation are dealt with in the
paper, one due to loss in the walls and the other due to loss in
the dielectric filling the guide.

The attenuation constant, e«,, caused by loss in the walls
depends on all factors governing propagation in the guide and
on the conductivity o and permeability n, of the wall-metal. In
the formulae of Table 2 all quantities are in Gaussian units,

667

e.g. for copper ¢ = 53.10% and u, = 1; the units of the re-
sultant «,, are neper/cm. However, the curves of Figs. 1 and 2
give numerical values (for an air-tilled copper guide), which
correspond to «,, in decibels/metre and to the guide dimensions
in centimetres, since these units are considered to be more
generally useful. The attenuation constant «; due to loss in the
dielectric depends on all factors governing the propagation, and
also on the loss-angle & of the dielectric. Both the formulae
and the curves of Fig. 3 give the values of o, in decibels/metre,
if wavelengths are expressed in metres. The total attenuation
constant, «, of a guide made of “lossy’’ metal and filled with
“lossy”’ dielectric should be taken as the sum of both these
attenuation constants: :
=0, oy . (22)
While the curves of Figs. 1 and 2 are restricted to the trans-
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Fig. 1.—Attenuation constant «yb3/2 of a rectangular air-filled copper
wave guide.

mitting region of a guide, Fig. 3 shows the attenuation constant oty
for both the transmitting and the attenuating regions. The
reason for this is that the attenuation constant, e,, is obtained
from the ratio of the power lost in the walls to the power propa-
gated in the guide, and hence only the transmitting region is of
interest, while the constant «; is obtained as the real part of the
propagation constant of a guide filled with lossy dielectric.
There is a smooth change of the propagation constant through
the threshold between the transmitting and the attenuating
regions; in fact, in the case of lossy dielectrics, this threshold
is not sharply defined. The curves of Fig. 3 have proved to be
convenient for finding the attenuation of a guide attenuator, i.c.
of a guide working in its attenuating region.

In addition to e, the phase-constant, 8, has also been calcu-
lated for guides filled with lossy dielectric. The formulae and
curves giving this constant are shown in Fig. 4; the values of 8
are expressed in radians/metre, for wavelengths in metres.
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Fig. 2.—Values of «,d3/2 for a circular air-filled copper wave guide.
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Fig. 3(a).—Values of agA.,.
[See eqns. (108), (109) and (110).]

(3) FIELD EQUATIONS

The field equations of any mode of wave for rectangular or
circular guides are collected together in Table 1. They refer to
the case of zero loss in the guide walls and dielectric; this con-
dition implies that the guide wavelength )\x and the guide specific
impedance Z,, are real.

The equations are essentially the same as those which can be
found in any book on wave guides; therefore, their derivation

‘terms of wavelengths, A,, A,
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Fig. 3(b).—Enlarged portion of Fig. 23(a) in the region around
cr = 1/ .

from the general Maxwell equations is not detailed. It is only
necessary to indicate how the present formulae can be obtained
from any other equivalent form of presentation.
Taking equations of either an H, - or an E  -wave in either
rectangular or circular guide, write them in the co-ordinate
notations used in the present paper and express all coefficients in
A,, and of constants «, u of the
dielectric. If the initial equations do not include a factor deter-
mining actual values of field (i.e. when some field is assumed as

“unity), introduce this factor, calling it 4. To obtain the actual

instantaneous values of fields, multiply also by the term e/«t, if
it is not present in the equations; then the instantaneous values
of the fields at any point of the guide and at a time ¢ will be
equal to the real parts of the expressions.

In the case of a rectangular guide, the wavelengths, )«a and )\b,
of the transverse oscillations in the @ and b directions are also
used.

In the case of a circular guide the argument p of the Bessel
function is expressed in the form:

P = &, m2rld, for an H,,-mode, and }

(23)
P = 8, m2rld, for an E,-mode.

In these expressions, r is the distance of a point from the centre |
of the guide, d is the guide diameter, &nm is the m-th root of the
equation: i

J(p)=0 249
and g;, ,, is the m-th root of the equation:
J.(p)=0 (25)

The values of g, ,, and g, ,, are tabulated in Table 1 for several

values of n and m.
Further, the following relationships are used:

IH0) = 0,19 Sy @)
D) — VD) + Iy D] @
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Fig. 4(h).—Enlarged portion of Fig.4(a) in the region around AcfA.,=1.

As the next step, the x-component, N,, of the complex
Poynting vector at a chosen point, y, z or r, ¢, of the guide cross-
section is calculated.

Assuming the sign of N, as positive in the positive x-direction,

* the following formulae are used.

For a rectangular guide,

c
and for a circular guide,
c

These formulae are given in the Gaussian system of units.

Since the real part of a complex Poynting vector, multiplied
by dS, determines the amount, dP, of the average power passing
through an elementary surface, dS, normal to the direction of
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the Poynting vector, the real part of the integral of N,dS taken
over the cross-section of the guide gives the average power, P,
passing through the whole cross-section, i.é. the power P carried
along the guide by the wave considered. i

As N, turns out to be real for a travelling wave, the simple
formula:

w
P= J N, dS (30)

S
is obtained, where S is the area of the guide cross-section.
The expression for P, obtained from equation (30), will be of
the following general form:
c
P = _8—7-TA2fi(K’ 'U., Ae’ Ac,y At).fz(s) (31)
where the function £,(S) is a product of the cross-sectional area,
S, and a numerical factor, kg,

£S) =k, 32)

The value of the coefficient, k,, is different for different wave
modes.
In the case of a rectangular guide, for an H, -mode %, is

given by: .
k,=1%,ifn=0
=1 . } (33)
k,=14%,ifn0
and for an E_ -mode it becomes:
s =31 . (34)
In the case of a circular guide, for an H -mode:
ky = J3(gg,m), if n=0,
1 , n \2] . 35
kg = 5Enm [1 - (F) ] ifn+0
and for an E_ -mode:
k, = J2 , ifn=20
e o B 36)
ky=3J2_(8ym) ifn#0
From equation (31), the value of 42 is written:
ot P 1 -

¢ ES S, py Ay Ay A,)

and the concept of “characteristic density” P’ (of energy, in
this case) is introduced:

, 4m P
== k_j (38)
Then the value of 4 becomes:
2P ¥
A= o | 39
meuwmj 39)

Finally, the factor A in the initial field equations is replaced
by the expression (39), and, in the field coefficients, specific and
transverse impedances are used instead of «, u and As. Then
the formulae take the form in which they are shown in Table 1.

The characteristic density, P’, appears in these formulae
together with the specific guide-impedance, Z,. being either
multiplied or divided by it, according to which way gives the
simpler set of coefficients in the equations. The square root of
P'Z, or of P’'|Z_ has the dimension of either the electric or the
magnetic field in either system of units.

Once one field impedance (Z,) has been used, it is logical to
express other factors of the coefficients in terms of impedances.
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The factor 2 emphasizes that the equations give instantaneous
values of fields, i.e. that the coefficients refer to amplitudes and
not to r.m.s. values, while the power, P, and the characteristic
density, P’, are taken as time-averages.

The field equations of the modes having n = 0 are given in
the Table as particular cases of the application of the general
formulae.

The table also includes the meanings and units of the symbols
used.

(4) ATTENUATION CONSTANT, ay

By the time the present paper appeared in its original form,
several authors!:23.4 had calculated for the particular types of
wave the attenuation of wave guides with imperfectly-conducting
walls.

The methods used were different. Some of them were based
on the calculation of currents in the guide walls, while in others
the complex propagation constant was calculated from boundary
conditions at the surface of imperfectly-conducting walls. The
method of splitting the wave into two plane waves, and calcu-
lating the losses in the top, bottom, and side walls of a rec-
tangular guide was also used. In all these methods the assump-
tion was made that the disturbance of fields in a guide, due to
losses in walls of relatively high but finite conductivity, was so
small that it could be neglected and that, consequently, the field
equations for the case of zero loss were still valid. The same
assumption is made in the present calculations.

Since wall losses are caused by wall currents, and the latter
are determined by magnetic fields, H,, at the surface of a guide,
only these fields enter into the calculations. The influence of
electric-field penetration into the wall-metal is neglected, since
the energy of the magnetic field in a good conductor is much
greater than that of the electric field (at centimetre wavelengths
in the case of a copper guide, the ratio of these energies is of the
order of 107).

The basic formula for the attenuation constant is obtamed
from the values of the magnetic field, H,, at the guide surface in
the following way.

The magnetic field, H,,, of a wave sliding upon the inner
surface of the wall induces a current in it, the density of which, i,
in the very surface of the wall, can be calculated from the
boundary conditions at that surface. Because of the imperfect
conductivity o of the wall, this current-density creates an electric
field & ,» along the wall in the direction of the current-density
vector, and hence perpendicular to the magnetic field H,,.
These fields, &, and H,, together give a Poynting vector Ny
perpendicular to the wall and, therefore, some power P, is
carried into the wall. The amount of this power is the essential
factor demanding the value of the attenuation constant, e,

The magnetic field, H, in the wall is, in the very surface, just
equal to H,, the magnetic field of the wave at the wall surface.
If the wall has high conductivity, o, and permeability w,, then at
a depth /& below the surface, the value of H becomes:>

3
H = H je~(1+)2ooy, (40)

Since the penetration of the electric field into the wall is
neglected, the current-density, i, in the wall is given only by the

curl of H:
-4mifc = curl H “n

In view of the assumptions made, the magnetic field, H, is
parallel to the wall surface; furthermore, in the presence of very
rapid variations in the normal direction, relatively slow varia-
tions of H along the surface can be neglected. Equation (4.2)
then gives

4mije = — dH[dh 42)
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.

from which, by using equation (4.1), the current-density i_, in the
very surface of the wall (i.e. for £ = 0), is obtained:

3

]) (wg.,o

w

This current-density is accomplished by an electric field
parallel to the wall surface and, because of the continuity of the
tangential component of field when passing from one medium
to another, the same electric field must appear in the guide on
the surface of the wall, Therefore, ‘the latter field, &, becomes:

ffw= =1+ )(“’"‘)H

c (21rwp.1a)*

= +i)z H, = (- H, .@43)

(44)

The complex Poynting vector N,,, caused by the co-existence of

the two fields (H,, and &), and directed into the wall, is equal to:

Nwz—-(‘f Hy = L+ )g= “’"') |H, 45)
If Ax is a longitudinal element of the wave guide, then an ele-
mentary surface of the wall within this length can be written
as AsAx, where As refers to an elementary length of the
periphery of the guide cross-section.

The mean power entering the wall through an elementary
surface AsAx is equal to the real part of the product N,AsAx;
hence the amount of power AP passing into the guide walls in
the length Ax of the guide is, by eqn. (45), equal to:

AP = A (k) f |, 2dS (46)

where the integration is taken along the whole periphery S of
the guide cross-section.

If, for convenience, the total magnetic field, H,,, is divided into
two perpendicular components, the sum of corresponding
integrals must be used in eqn. (46). Therefore, the final ex-
pression for AP becomes:

AP = Axg ;"“;) Z J;!Hw]zds.

To obtain the attenuation constant, «,, of the guide, this loss,
AP, of power has to be combined with the total power P carried
by the wave along the guide through the guide cross-section.

The constant, «,, (in nepers/centimetre of guide-length) may
be defined by the following formula:

P = P(0)e—2xwx (48)

where P is the total power passing through the cross-section at a
distance x from the origin, x = 0, and P(0) is the power at the
origin.

By differentiation, the power AP lost in the length Ax of
the guide at the cross-section, x, is found; viz. the power
“gained,”” — AP, is equal to:

@n

— AP = — 24, PAx “9)
Hence the attenuation constant «,, becomes:
1 AP
=s = . . . . . . (50
% =3 PAx (50)

Since e,, refers to attenuation due only to loss in the guide walls,
the amount AP of power, involved in equation (50), defining
x,, is equal to the amount AP lost in the walls and given by
equation (17). Therefore the expression for «, becomes:

w.“'l *1

% 1677 871'0' J"H f2dS . <D
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By using the characteristic density P’ of energy [see eqn. (38)]
and writing for w [eqn. (1)]:

2mc
L e—— 52
()2, 2
the following expression for «,, is obtained:
w
_fem 11 (plk)* N
a H |2dS 53
¥ [op()}S}\Z 8k P’ s[ g &)

Now this formula is applied to the cases of H- and E-mode
waves in rectangular and circular guides.

The most tedious part of the calculation is, of course, the
evaluation of the sum of integrals met in eqn. (53). The major
steps of this calculation are shown for these four cases.

(4.1) Attenuation of an H,,-wave in Rectangular Wave Guide

In the case of a rectangular guide the top and bottom walls
and the side walls are considered separately.

If an H, -mode is taken (Table 1), then at the top and
bottom walls (i.e. for y = 0 and y = a), only the components
H, and H, of the magnetic field H,, are found. They vary in
the z-dlrectxon with0 <z b.

The formulae of Table 1 give the sum of integrals for both top
and bottom walls as equal to:

72

1 1
2P Z b _"’_)
P2zt 7 m

Similarly, for the side walls, where z = 0 or z = b, the com-
ponents H,. and Hy are generally present, and they vary in the
y- dlrectlon, with 0°<C y < a. The sum of integrals is different
in the cases n = 0 and n0.

If n == 0, the result of integration for both sides of the guide is:

4P'Z a(1/22) . (55)

(54)

and if n £ 0, :
2P'Z a[I|Z2, + (Z21/Z22Z2)] (56)
When summing the values of integrals for all four walls of the
guide, several algebraic transformations are made.

In the case when n = 0, Zb becomes Z,, the relationship given
by eqn. (6) is used, and /\ is substltuted for Z. As a result,
the summation gives:

w(Ya(h 1)

In the case when n 5% 0, the corresponding expression is much
more complicated. In obtaining it, the relationship given by
equations (19) and (6) are used, A, substituted instead of Z,,
and by eqn. (16) )\ and /\ are expressed in terms of d1mens1ons

(57

A2
Also, the result is arranged to obtain the ratio X—z- in
CI'

Finally the following expression

a and b,

brackets with the coefficient 1.

is derived:
(K ! Ax, A‘2’ '
2() a5 + k) 58)
1 4-(bay¥(n]m)?
where P BlaRnmy 59
and 1 -+ (bla)(n]m)* b )

F T Glaaim? @
The values of the total sums are now substituted in the equation
for & [eqn. (53)]. At the same time @b is written for S, and the
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numerical values for k, given by eqn. (33), are used. The
values of «,, then become:

Forn =0,
- [c M( )] B ,\g,

and for n # 0,
):I b/\M '(/\2 " ")

) .. (6D

o, = [C" (62)
Tp\p

Finally, an alternative form of these formulae is produced, in

. LA, . .
which the ratio X‘— is the only parameter involving wavelengths.
or

Then forn =0

=[5 25 ] am [—A———‘—AZ—T('"Y(A?, 3

Zef1 -l
ACT( ’\gr)
and for n # 0,

Sl Bl vy

where the coefficient &, f2 18 given by:

o (3 QY G

(4.2) Attenuation of an E_,,-Wave in Rectangular Wave
Guide

For the case of an E_-mode in a rectangular guide, the calcu-
lation runs on similar lines, but is somewhat simpler due to
the fact that in this case only the transverse magnetic field is
encountered; also, the value of the index n cannot be equal to
Zero.

After integration, the following values of the sums of integrals
are obtained.

For the top and bottom walls,

sl ) o

(65)

P’ Z2

-Z-b Z“ . (66)
and for both side walls,

P’ Z 2

7z ©n

By summation followed by substitution of /\s instead of Z|, the
result is obtained in a form similar to that of equation (58).

2pf(g)*a§.jk, o

where the coefficient %, is the same as that given by eqn. (59).

(68)

When this value is substituted in eqn. (53), ab written for S,
and % for &, [eqn. (34)] the attenuation constant «,, becomes:

[5G T

. . A . .
Finally, with the ratio £ as the only parameter involving wave-

(69)

cr
lengths, the alternative form of this expression is:
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C pyrK ‘}]‘! 1 1
o, = |="=(=) | = =—————————kypk 70
i [o #(p) b3z [Z“’—(l )\2)]! ke - (70)
Acr A%
where the coefficient k3, is given by eqn. (65).

(4.3) Attenuation of an H,,,-Wave in Circular Wave Guide

In the case of an H,-mode in a circular guide, the integration
of |[H,|? is performed “around the circumference of the guide
cross-section.

Here two perpendicular components of H,, i.e. H, and H,
are found, the values of which are obtained from the formulae
of Table 1 by putting » = 1d; the mtegrals for [H,|? and |H,|?
are calculated separately and the sum is taken.

For a point in the circumference of the guide cross-section,
the argument p of the Bessel functions becomes g, ., and then,
in view of the definition of &n,m (€qn. 23) and of the property of
Bessel functions (eqn. 26):

n

For any value of n, the following expression is obtained for the
integral of |H,|?:

Jn+l(g;l.m) = Jn—l(g;:,m)

j a5 P2 303,

2r 2r

Jcosz ngde -+ ,,_l(g,, m) sin2 nquqS:I
o

(72)

The value of this integral is different in the cases when n = 0
and when n £ 0.

If n:=0, the second term in eqn. (72) vanishes, and the
expression becomes:

2 ’
J’ |H,|2dS = P’Zxanﬁ’%ggﬂ) 73)
s cr
and if n £ 0, both terms remain, and
2(o’ 2 ’
J |H,|%dS P’wad[{%@‘) + —*‘“J"_lz(f"'m)] (74)
S cr X
The letter Z is now replaced by A.
For the case n - - 0 it is seen at once that
JlelzdS 2P’( ) d eﬁ( 25 ) (5)
In the case when n =% 0, eqn. (6) is used.
In view of equations (27) and (71),
n , ,
(&) = o108 m) (76)

n,m

so that the integral becomes:

J |H |2 P’(E)*wd%‘lﬁ(g;,,m)[l - (gL)ZJ BT:- + k,] an
S € nym cr
where k, = 1/[(3'5;_-6'">zw ] - 1/|: gnm) _ :|

The values of integrals are substituted in eqn. (53); at the same

(78)
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time S is replaced by 4md? and k, by its value given in eqn. (35).
If n = 0, the value of «,, becomes:

_lem AN
I A (,u) d )\2 '
This formula is very interesting since it shows immediately that
for an Hy,-mode in a given circular guide the attenuation con-
stant o, decreases to zero if the frequency increases to infinity,
i.e. if both A, and A, decrease to zero. This is a well-known
property of an HOm-mode of wave in a circular guide.
However, to get uniformity with the formula obtained for
other modes of wave, this form of expression for o, is written
in a different way:

(9

Y i oA
“[ ()]dn A(,) (80)
If n = 0, the value of &, becomes:
¢ iy oA, )
oo [0 oG ) - o

and it is seen that the above-mentioned property of an H,-
mode no longer exists because of the presence of the term &, in
the formula; the value of &,, given by eqn. (78), cannot be zero
except in the case when n = 0; for n 7= 0, with )\ decreasing to
zero, o, would be increasing continuously.

As the last step, equations (80) and (81) are modified to contain
only the ratio A/A,. To do this, the relationship shown in
Table 1 is used:

Ay == —-d (82)
glx,m

and then:

forn =0,

w0 Tan

x;(l i;)
G R

Eqn. (84) also includes eqn. (83), since for n -= 0 the value of &,
becomes zero.

R

and for n % 0,

(4.4) Attenuation of an E ,-Wave in Circular Wave Guide

For the last case considered, an E_-mode in a circular guide,
the calculation is slightly shorter than for an H -mode.

At the wall surface H,, is found to be the only component of
the magnetic field H,. The relevant value of Hj, is obtained
from the formulae of Table 1 by putting r == 4. Then the
argument p of the Bessel functions becomes g, for which
value, from equations (24) and (27)

(85)

When this equality is taken into account, the integral of |H |
around the circumference of the guide cross-section becomes:

Jn+1(gn,m) == Jn—l(gn,m)

2
J.[H [2dS = ——d.l,,_l(g,,,m)'[cos2 ngdp . (86)
0

Again the value of this expression is different for » = 0 and for
n7#0.
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Ifn=20
ﬁH [2dS = _27m'12(g0 " @7
and if n %40,
(88)

P'
'[ \H, 2dS = 7T (&)
X

Z,is now replaced by )\s and the values of the integrals are inserted
in eqn. (53).

If S is replaced by 3wd? and k, by its value given in eqn. (36),
the expressions for e, become identical for both cases, n = 0 and

n£0;ie.:
o, = [c .“'1( )]*l A,

The alternative form of the formula is:
_ [c m( ):l - g,,,,,,)
=)

(4.6) General Expression for the Attenuation

When the formulae obtained in the four cases considered are
compared, it will be evident that it is possible to derive a general
expression for e,,, which could be applied to each of these cases,
provided suitable values are given to the coefficients entering the
expression.

The two equivalent forms of this general expression are:

A,
) =[C M():I*zl)ng'( 2+")
an
]kmk( +k)(92)

% [cm()]mﬂ[,\ 11 )

(89)

(50)

©n

22
AR

The second form of the expression will be discussed in detail.
The electromagnetic properties of the wall-metal affect the
attenuation constant o, through the factor:

BAONE

b
which comprises the ratio of the specific admittance (%) of the

3

unbounded dielectric filling the guide to the conductivity o of
the wall-metal, and the ratio of permeabilities, ¢, and u, of the
wall-metal and the dielectric.

This factor is directly proportional to the square root of the
permeability u, of the wall-metal, and inversely proportional to
the square root of its conductivity o. Thus, having calculated
the attenuation constant «,, for a given wave-mode in a given
guide for one kind of wall-metal, the corresponding constant e,
for another metal can be easily obtained.

In the case of an air-filled guide with walls made of copper of
conductivity o = 53.10'6 and u, = 1, the value of the factor
becomes 0-238 . 10—3. This value, with dimensions of the guide
taken in centimetres, would give e, in nepers/centimetre. To
obtain «,, in decibels/metre, when the guide dimensions are still
kept in centlmetres, this value should be multiplied by 8-68 . 102,
giving 0-2065.

The wave frequency appears in the formula only through the
ratio of A, to A,. This ratio also depends on the dielectric, the
shape and dimensions of the guide, and the mode of wave.
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Nevertheless, all these features form only a kind of background
on which the influence of frequency is superposed.

The linear dimensions of the guide cross-section are repre-
sented in the formula only by D, meaning either the width b in
rectangular guide or the diameter d in circular guide. The
attenuation constant «,, is inversely proportional to the three-
halves power of the guide dimension. Thus the product o, D3/2
is independent of the actual value of this dimension, and hence
the curves, which show the relationship between this product and
other quantities influencing the attenuation, are applicable to a
guide of any size.

Values of the coefficients k,, k,, k, and ky;, depend on the
shapc of the guide cross-section and on the mode of wave. £, is
given by eqn. (59) for a rectangular guide as a function of the
ratio bla and of the ratio of subscripts n, m. For a circular
guide k, = 1. k, can be either 1 or 0. It exists, and is equal
to 1, when the x-component of the magnetic field exists, i.e. in
the case of an H-mode of wave. It becomes zero for any
E-mode. k, exists when there is a transverse component of the
magnetic field at the guide wall; hence it vanishes only in the
case of an Hj,-mode in a circular guide, for which there is
only a longitudinal component. In the case of any other H-mode
in a circular guide, k, is given by eqn. (78); for an H-mode in
a rectangular guide it is determined by eqn. (60), depending on
bla and n/m; and for all E-modes, whether in rectangular or
circular guides, it is unity.

Finally, the coefficient k3, only enters into the formula (92) in
which the gulde dimensions appear to the power 3/2, while the
three remaining coefficients are present in both formulae (92)
and (91). The value of k), for rectangular guide is given by
eqn. (65), and depends on the ratio b/a and on values of n and
m. In the case of circular guides it becomes:

for an H-mode wave,

RN
ey = (2m)". 94)
and for an E-mode,
&nm\¥
kapp = ( K’m) 95)

The general formulae for e, and all relevant information are
repeated in Table 2. As particular cases, the formulae are
given for the two wave modes most frequently used, i.e. the
Hy,,-mode in a rectangular guide, and the H;;-mode in a
circular guide. Further, because of its exceptional properties,
eqn. (29) is also quoted, giving e, for an Hy-mode in a circular
guide.

The formulae obtained are rather complicated and their
application to a particular case is tedious.

It has, therefore, been thought useful to prepare curves which
enable one to find quickly the attenuation constant «,, in cases
likely to be met in practice. The curves are of a general nature
so that they can be applied to a guide of any dimensions, trans-
mitting some simple mode of wave of any desired frequency.

In order to make the families of curves compact but compre-
hensive, they depict the relationship between the quantity, «, D3/2,
involving attenuation but independent of linear dimensions, and
a term through which the frequency affects attenuation. For the
latter term, the ratio A,/D has been chosen instead of AJA,
since it has been thought more convenient to relate the wave-
length )\ directly to the guide dimensions instead of to the critical
wavelength )\ Hence, the curves display the function:

w0 ~1(3) ©0
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The attenuation constant e, obtained from these curves refers
to an air-filled copper guide. For any other metal with p; =1,
the values of «, given by the curves should be divided by the
square root of the ratio of conductivity ¢ to that of copper.

In the case of a rectangular wave guide the curves are drawn
for various ratios of the guide dimensions, b/a, and for three
modes of wave: Hy,, H;, and E;,. These curves are shown
in Fig. 1. Since the mode Hy, is that of greatest practical
‘importance, the family of curves for this mode is drawn in full
lines.

In the case of a circular guide the curves are drawn for several
of the lowest modes of wave (see Fig. 2), with emphasis laid on
the three modes: H,;, E, and Hy,. Incidentally, Fig. 2
shows the order of likelihood of appearance of the modes in a
circular guide, i.e. H;, Ey,, H,,, Hy, and E;;, Hy, Ej;, Ep,
Hy,, and so on.

As an application of the formulae and the curves, the constant
a,, is calculated for the Hy;-mode of wave in an air-filled rectan-
gular copper guide 3 in by 1 in at a frequency f= 3 000 Mc/s.

The various parameters involved in the formula of Table 2
(particular case), then have the following values:

ol
[S &(ﬁ) ] = 0-2065 (« in db/metre)

O fro\ L
=3in=7-62cm; bla =13
A, = Ay ==10cm
A, = 2b == 15-24 cm; hence A, = 13-25cm
%i=0 419,%%~0 431
Thus o, becomes:
x, = 0- 20657—16—20 419(0-431 ;) = 0-022 db/metre

If the curves of Fig. 1 are used, the value of « b32 for bja = 3
is interpolated from two curves, bfa==2 and bla=5 at
Alb = 10/7-62 = 1-131.

For bla =2, o, p32 = 034,
bla=5, a b2 =070

At a given A_/b there is a reasonable proportionality of change
of «,b3/2 between the different bfa curves; hence for bja = 3 it
can be written:

and for

o b2~ 034 - g—:—i(o'm —0-34) = 0-46
This gives
0-46
aw = mﬁ' ~0-022 dblmetrc

(5) ATTENUATION CONSTANT, oy

The other kind of attenuation considered in this paper is that
due to loss in the dielectric filling a guide.

It is assumed now that the guide walls are perfectly con-
ducting. Then the field equations of Table 1, which show the
field distribution in the guide cross-section for a particular mode
of wave, remain valid. In particular, the critical wavelength,
A of the guide remains real—as in the case of a lossless
dielectric,

From these equations it is seen that the amplitudes of the
fields would not vary in the direction x, along the guide, if the
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term j21-r/)\x were entirely imaginary, as it is in the transmitting
region of a lossless guide. ]
The dielectric losses cause this term to become complex,

j277//\x = ay -k jﬁ 97

and then, the real part of it, «;, shows the rate at which the
fields decrease along the guide in the direction of propagation,
decreasing, in fact, as e—~%*, Hence in this case, by definition
of attenuation constant, the quantity «; [as given by eqn. (97)]
is the attenuation constant of the guide. Eqn. (97) gives its value
in nepers per unit length of guide; to obtain e, in decibels per
unit length, the multlpllcatlon factor 868 is introduced.

The quantity B given by eqn. (97) becomes the phase-constant
of the wave along the guide, instead of the term 27/A, as in the
case of no loss in the dielectric; B is given in radlam per unit
length of guide.

To determine how the quantity 2w/)\x depends on loss in the
dielectric, the procedure is as follows. In the case of a lossless
dielectric, eqn. (2), derived from Maxwell’s equations, gives the

relationship:
2 2 2
-G+ 6

where )\ . depends on dimensions of the guide and on the mode
of wave but not on the dielectric, and )\ defined by eqn. (1),
depends on the frequency and the properties Kk, p of the
dielectric. For a lossless dielectric the values of « and p are
entirely real.

It is usual to take account of a small loss in a dielectric by
attributing an imaginary component to its dielectric constant «,
writing:

(98)

k=K' — jk" 99)
and the lossiness of a dielectric is determined by the ratio:
K"k’ = tan & (100)
where 0 is called the loss-angle of the dielectric.
Hence, « can be written:
Kk = k’(1 — jtan 9) (1on

When this value of « is introduced in eqn. (1) and the notations
of eqn. (97) are used for Zwl)tx, the basic equation (98) becomes:

CLEY 0~ jtan ) = (32) - g 87 - 102

k' appears here in the same way, as does « in eqn. (1) and, there-
fore, the same symbol /\e is used for the expression:

c

A Syt

However, )\ so defined, is not qulte equal to the wavelength in

the unbounded lossy dielectric «’, 8, w. The exact value of

this wavelength can be obtained from eqn. (102) as equal to
27/B, when A, is made infinitely large.

The final form of the basic equation, involving the newly

defined symbol A,, becomes:

— (g +jBR = (~) (1 —jtand) — (/\ )2

cr

(103)

(104)

where all the terms, ay, B, 8, A, and A_,, are real.

Since in these considerations no particular mode of wave has
been assumed, eqn. (104) is valid for any guide and for any
mode of wave.
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Equation (104) leads to two simultaneous equations:
2m\2 2m\2
2 w2 (20 - (2E
pa- G- )
2m\2
20,8 - (7‘;) tan &

These equations, solved for real and positive values of &; and B,
give the following results: :

[T -} [ - (AA;)Z]}}i

(106)

- fz\j{%{] { :1 B (1\1)2]2 i-tanza}i +[1 - G?)’]}}*

It is easy to check that for a lossless dielectric (8 = 0) and for
A, < A, oy becomes zero, and 8 becomes 27/A, with A, given
by eqn. (2).

Both «, and B are inversely proportional to Ae, hence the
expressions o;A, and BA, are entirely independent of any linear
dimensions; they depend only on the ratio )\el)«c, and on the
loss-angle 3.

However, it has been thought more convenient to use the
products, ayA_, and BA_,, as the quantities independent of linear
dimensions, since, for a given mode, A, is determined directly
by the dimensions of the guide. Therefore, the general curves of
Figs. 3 and 4 show the values of these quantities and not those
of ayA, and BA,.

The formulae (106) and (107) are valid for any values of
AJ)A, and tand. However, a convenient simplification is
possible for small values of § (tan 8 < 0-1, say) in cases where
the ratio A,/A,, does not approach unity.

The following formulae give the attenuation constant «; in
decibels/metre, if A, is expressed in metres.

If tan 8 is small and A, much smaller than A,,, the square-root
term containing tan2 8 in eqn. (106) may be expanded in the
form of a series and, when higher powers are neglected, the
approximate value of a;A,. becomes:

a2 27262 2 qecipels

-G

If, with tan 8 small, A, is much larger than A
formula obtained in the same way becomes:
o),y = 54+51 [1 - Gc_

e

. . . (105)

(108)

. the approximate

2%
] decibels . (109)

For values of A, in the region of )tcr the unsimplified formula
must be employed: '

3
oA, = 54-51;‘—"{%{'{[1 — (}‘—)2:]2+ tan28} l
%
_[1 ~ (?T')z]}} decibels . (110)

Similarly, the following expressions are obtained for the
phase-constant, B, with B in radians/metre, if /\c, is in metres.

Tf tan 8 is small, and A, < A,

2 r
’) — 1} radians

B, ~ 277[(;& (111)

677

If tan & is small and A, > A, then
A tan 8

BA,., =~ .,T;\g — radians (112)
(4

A2 T
=) —1
[63)

the full formula must be

but when A, lies in the region of A
used:

po-sie i[5
-+ [1 - (%:)2]}}* radians . (113)

From these expressions the following is noted. In the trans-
mitting region of a guide (i.e. when A, < A,), if A, is not too
close to A, the attenuation constant a, is proportional to the
tangent of the loss-angle of the dielectric filling the guide, while
the phase-constant 8 may be said to be independent of it. At
very high frequencies, i.e. with )\e decreasing to zero, a; becomes
proportional to frequency and the wave is quickly attenuated.

In the attenuating region of a guide (i.e. when A, > A_), if A,
is not too close to A, the attenuation constant «, ceases to
depend on the loss-angle of the dielectric; instead, the phase-
constant B is no longer zero, as in the case of a lossless dielectric,
but becomes proportional to tan 8. At very low frequencies the
value of a,A, tends to the limit of 54:5db and the phase-

constant decreases to zero.
Due to loss in the dielectric the threshold between the two

regions becomes less distinct and, when passing it in the direction
of increasing )‘e, a gradual increase of «, and a gradual decrease
of B is observed.

In Figs. 3 and 4 curves are drawn depicting the relationships
of equations (110) and (113) for a few values of tan 9, i.e. for
0; 0-0005; 0-01 and O-1.

In Fig. 3(b) the curves for the transmitting region of the guide
are presented on an enlarged scale. It is also shown that the
minimum value of the attenuation constant «, occurs when the
ratio A, /A, is equal to /2, or, in other words, when A, ~ X .
i.e. the wavelength along the guide is equal to the wavelength in
the transverse direction.

In Fig. 4(b), the region of A, = A, is shown on a larger scale.
An abrupt change of the curve is apparent for the case of a
lossless dielectric, as distinct from the smooth transition when
the dielectric is not lossless.

As an example of the application of the formulae obtained,
a calculation is made of the attenuation constants e, and «, for
a copper guide which is filled (in order to reduce its cross-
sectional dimensions) with the best obtainable dielectric such as
polystyrene (k = 2:55; tan 8§ = 0-0006).

Assume a rectangular guide, the Hj,-mode of wave, and a
frequency f = 3 000 Mc/s. By eqn. (103), A, becomes equal to
6-3cm, and a 3-in by 1-in guide can be reduced to the dimen-
sions, b = 4-8cmand a = 1-6cm.

A, 63 b . .
e i 1-31 and o= 3, gives the value of

o, b32 as equal to 0-46. Since this figure refers to an air-filled
guide, it is multiplied by 4/«’ to take into account the change in

cr?

Fig. 1, for

tatk
the numerical factor [5 ad} (E) ] ; and the correct value of

o p
e, b2 becomes;
o, b¥2 = 0-464/2-55 = 0-58
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0-58 .
Hence %y = o= 0-055 decibel/metre
Since Fig. 3(a) would give an inaccurate value of ocd)\c, for tan &
-3
0-0006, the formula (108) is used instead. For Xj = 2(64—8)

= 0-656, azA,, becomes
o\, - 0-033 decibel

0-033
and hence m= = ) ibel T
¢ % = 57056 0-344 decibelfmetre
It is seen that the attenuation due to loss in the dielectric is six
times greater than that caused by losses in the wall metal, in
spite of the fact that the best solid dielectric is used. The total
value of the attenuation constant « for this guide would then be:

o =3 oy - e, =~ 04 decibel/metre

as compared with 0-022 decibel/metre for the full-size 3-in by
1-in guide filled with air and carrying the same mode of wave
at the same frequency. From this it is seen that, at present,
the reduction of size of a wave guide by filling it with a solid
dielectric is always accompanied by an enormous increase in
the guide attenuation.
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